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CayMos [4] is a software system for analyzing the configuration spaces of a common class of 2D mecha-
nisms called 1-dof tree decomposable linkages with low Cayley complexity [2]. CayMos implements efficient
algorithmic solutions for: (a) meaningfully representing and visualizing the connected components of the
Euclidean realization space of the linkage; (b) finding a path of continuous motion between two realiza-
tions in the same connected component, with or without restricting the realization type (sometimes called
orientation type); (c) finding two “closest” realizations in different connected components.

1 CayMos Functionalities and User Interface

CayMos accepts user input of a linkage by allowing the user to draw the bar and joints of the linkage.

1.1 Generating Cayley configuration spaces

The user can generate the Cayley configuration spaces for 1-dof tree-decomposable linkages with low Cayley
complexity. The following functionalities are provided by CayMos:

1. CayMos determines whether the given linkage is 1-dof tree-decomposable. For a 1-dof tree-decomposable
linkage, it determines whether the linkage has low Cayley complexity, implementing the Four-cycle
algorithm from [3].

2. For a linkage with low Cayley complexity, CayMos generates both the oriented and non-oriented Cayley
configuration space(s), implementing the ELR algorithm from [2]. See Figure 1 and 2 for the user
interface.

3. The user can change the length of the chosen base non-edge to see corresponding realizations. The
generated Cayley configuration space is shown as a set of intervals, and a dot representing the current
Cayley configuration is shown on the axis, as shown in Figure 1 (C). The user can use a spinner to
change the Cayley configuration and show a corresponding realization, as shown in Figure 1 (B).

4. The user can specify the realization type by changing the local orientations at specified construction
steps. The realizations shown, as well as the intervals of the oriented Cayley configuration spaces, are
color-coded corresponding to different realization types. See Figure 2.

1.2 Visualizing a connected component of the realization space

After generating the Cayley configuration space, the user can generate and visualize the connected component
of the realization space containing a given realization. The following functionalities are provided by CayMos:
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Figure 1: Generating the non-oriented Cayley configuration space of the Limacon linkage using CayMos. (A)
Button for generating the Cayley configuration space. (B) Spinner for specifying the length of the base
non-edge and navigating the Cayley configuration space. (C) Intervals of the Cayley configuration space.
The black dot denotes the Cayley configuration for the current realization.

1. Showing the non-edges in the complete Cayley vector of the linkage, as well as displaying the complete
Cayley distance vector for the current realization. See Figure 3 (B) and (C).

Note: The current version of the software implements the complete Cayley vector defined in [1], which
has higher dimension than the minimal complete Cayley vector defined in [2].

2. Generating the connected component containing the current realization, implementing the Continuous
motion path algorithm from [2]. See Figure 3 (A).

3. Visualizing the connected component: the user can pick three non-edges from the complete Cayley
vector, and CayMos shows the 3D projection of the canonical Cayley curve of the current connected
component on those three non-edges. CayMos permits the user to use a spinner to trace the connected
component, and a moving dot is shown on the curve to denote the current realization. The canonical
Cayley curve is color-coded corresponding to realization types encountered in the connected component.
See Figure 3 (E), (G) and (D).

4. Showing the intervals of oriented Cayley configuration spaces contained in the current connected com-
ponent. The intervals are color-coded corresponding to realization types. See Figure 3 (H).

5. Showing the curves traced out by vertices of the linkage in the current connected component. See
Figure 4.

1.3 All connected components and continuous paths in the realization space

The user can generate all connected components of the realization space, and find a continuous motion path
between two realizations. The following functionalities are provided by CayMos:

1. Generating all connected components of the realization space, implementing the adapted Continuous
motion path algorithm from [1]. See Figure 3 (F).
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(Fig.a)

(Fig.b)

Figure 2: Two different oriented Cayley configuration spaces of the Limacon linkage. (A) Button for changing
the realization type. (B) Intervals of the corresponding oriented Cayley configuration space.
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(Fig.a)

(Fig.b)

Figure 3: Finding the connected components and showing corresponding canonical Cayley curves of the
Limacon linkage using CayMos, where (Fig.a) and (Fig.b) show two different connected components. (A)
Button for generating the connected components. (B) The current realization, moving as the user traces the
connected component. Dashed non-edges: non-edges in the complete Cayley vector. (C) Panel showing the
complete Cayley distance vector for current realization. CayMos allows the user to pick three non-edges for
3D projection of the canonical Cayley curve, where the picked non-edges are shown in red, green and blue
in (B) and (C). (D) Spinner for tracing the current connected component. (E) Button for showing the 3D
projection of the corresponding canonical Cayley curve. (F) Spinner for navigating all connected components
in the realization space. (G) The 3D projection of the canonical Cayley curve of the current component.
The dot denotes the current realization and moves as the user traces the connected component. The curve
is color-coded according to realization types. (H) The intervals of the oriented Cayley configuration spaces
contained in the current connected component.
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Figure 4: Showing the curve traced out by a vertex in a non-standard component of the Limacon linkage.
(A) Button for tracing a vertex. (B) The curve traced by the selected vertex.

2. Finding a continuous path between two realizations specified by the user (if one exists), implementing
the Continuous motion path algorithm from [2]. See Figure 5 (Fig.a).

3. Finding a continuous path between two given realizations, maintaining the same realization type. Note
that such a path exists if and only if those two realizations lie in the same interval in the oriented Cayley
configuration space [2]. See Figure 5 (Fig.b).

1.4 Cayley distance between connected components

When the user specifies two realizations in different connected components and tries to find a continuous
motion path between them, CayMos will find the two nearest realizations of these two components using the
Closest pair algorithm from [1]. Both connected components are shown as projected curves, and the two
nearest realizations are marked on the two curves. See Figure 6.

2 CayMos software architecture and pseudocode

2.1 Major classes and architecture of CayMos

Overall the backend of CayMos consists of two parts, with the following major classes.

2.1.1 1-dof tree-decomposable linkages and Cayley configuration spaces

1. The TDLinkage class: represents a 1-dof tree-decomposable linkage.

Major Attributes:

– graph: the underlying graph of the linkage.

– barLengths: the length of the bars of the linkage.

– baseNonedge: current base non-edge of the linkage.

– completeCayleyVector: the complete Cayley vector for the current base non-edge.
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(Fig.a)

(Fig.b)

Figure 5: (Fig.a) Finding a continuous motion path between two realizations of the Limacon linkage. (Fig.b)
Finding a continuous motion path maintaining the same realization type between two realizations of the
Cadioid linkage. (A) Spinner for tracing the generated continuous motion path. (B) The 3D projection of
the segment of the canonical Cayley curve corresponding to the continuous motion path. The red and blue
dots denote the start and end realizations. The black dot denotes the current realization and moves as the
user traces the path. (C) The start and end realizations. (D) The Cayley configuration for the start and
end realizations. (E) The intervals of the oriented Cayley configuration spaces encountered along the path.
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Figure 6: Finding two nearest realizations between two connected components using CayMos. (A) Spinners
for tracing the two connected components containing the two given realizations. (B) The 3D projection of
the corresponding Cayley curves of both connected components. The pink and cyan dots denote the two
nearest realizations between the two components. The red and blue dots denote the current realizations
and moves when tracing two components. (C) The start and end realizations. (D) The current realizations
represented and traced by moving dots on the two components.
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– cayleyConfigurationSpace: the Cayley configuration space on the current base non-edge.

Major Methods:

– isLow(): elaborated in Section 2.2.1.

– getCayleyConfigurationSpace(): elaborated in Section 2.2.2.

2. The Realization class: represents a realization of a TDLinkage instance.

Major Attributes:

– tdLinkage: the corresponding 1-dof tree-decomposable linkage of the realization.

– points: the 2D points in the realization for the vertices of the linkage.

Major Methods:

– length(e:Edge): Returns the length of e in the realization, where e can be an edge or a non-edge.

– getCompleteCayleyDistanceVector(): Returns the complete Cayley distance vector of the realization.
Calls length() for each non-edge in the completeCayleyVector field of tdLinkage, with time complexity
O(|V |).
– cayleyDistance(that:Realization): Returns the Cayley distance [1, Section 3.2] between this realization
and that with time complexity O(|V |).

3. The CayleyConfigurationSpace and OrientedCayleyConfigurationSpace classes: represent the Cayley con-
figuration space of a TDLinkage instance. Each CayleyConfigurationSpace contains multiple Oriented-
CayleyConfigurationSpace instances.

4. The OrientedInterval class: represents an interval in an oriented Cayley configuration space.

Major Attributes:

– upper and lower: the upper and lower endpoints of the interval.

– realizationType: the realization type of the OrientedCayleyConfigurationSpace containing the interval.

– nextIntervalUpper and nextIntervalLower: the two OrientedInterval instances sharing a common end-
point with this interval. They are immediately reachable from this interval in a continuous motion.

2.1.2 Continuous motion generation and representation

1. The ContinuousMotion class: represents a continuous motion path between two Realization instances,
or a connected component of a TDLinkage instance.

Major Attributes:

– tdLinkage: the corresponding 1-dof tree-decomposable linkage of the continuous motion.

– orientedIntervals: the list of OrientedInterval instances encountered along the continuous motion.

Major methods:

– findComponent(), findPath() and findAllComponents(): elaborated in Section 2.2.3.

– findNearestRealizations(): elaborated in Section 2.2.4.

– getRealizations(): Returns a list of realization samples along the continuous motion by sampling
the orientedIntervals field. Uses a sampler object so that different ways of sampling can be chosen at
runtime.

– get3DCurve(f1,f2,f3): Returns a Curve3D instance representing the 3D projection of the continuous
motion’s corresponding Cayley curve on f1, f2 and f3, three non-edges from the complete Cayley vector
of tdLinkage. The time complexity is linear in the size of the list returned by getRealizations().
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Figure 7: UML diagram for major classes.

2. The Curve3D class: supports visualization of a ContinuousMotion instance as a Cayley curve projected
in 3D.

Figure 7 shows the relationships between the above classes.

2.2 Major methods

2.2.1 Method isLow()

The method implements the Four-cycle algorithm [3, Theorem 2] returning true if the calling TDLinkage
instance has low Cayley complexity, or false otherwise. It also implements [1, Theorem 3] to find the complete
Cayley vector and store it in the completeCayleyVector field. Since both algorithms follow the construction
of the linkage, we combine the implementation into one method. The time complexity is O(|V |2).

Note: in the current version of the software, the complete Cayley vector is implemented as in [1, Theorem 3],
which is not minimal. The minimal complete Cayley vector introduced in [2, Theorem 4] will have dimension
two for a large number of 1-dof tree-decomposable linkages.

Pseudocode for isLow() :

boolean i sLow ( ) {
comp l e t eCay l e yVec to r . add ( baseNonedge ) ;

f o r ( each c o n s t r u c t i o n s t ep s ) {
// Con s t r u c t i o n Step s : add ing two c l u s t e r s s . c1 and s . c2 , s . v / ( s . v1 , s . v2 ) , s . v1 ∈ s . c1

, s . v2 ∈ s . c2
i f ( s i s not d i r e c t l y based on the base non−edge ) {

// f i n d a v a l i d p a i r o f base c l u s t e r s
f o r ( each Ver t ex w i n the p r e v i o u s l y c o n s t r u c t e d graph s h a r i n g a c l u s t e r w i th both s.v1

and s.v2) {
C l u s t e r c1 = the c l u s t e r c o n t a i n i n g s . v1 and w;
C l u s t e r c2 = the c l u s t e r c o n t a i n i n g s . v2 and w;
i f ( v a l i dB a s eP a i r s . c o n t a i n s ( ( c1 , c2 ) ) {

i sLowStep = t r u e ;
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comp l e t eCay l e yVec to r . add ( nonedge (w, s . v ) ) ;
c u r r e n tBa s ePa i r s . add ( ( c1 , c2 ) ) ;

}
}

i f ( ! i sLowStep ) // does not have low Cay l ey comp l e x i t y
r e t u r n f a l s e ;

f o r ( Pa i r ( c1 , c2 ) i n c u r r e n tBa s ePa i r s ) {
v a l i dB a s eP a i r s . add ( ( s . c1 , c1 ) ) ;
v a l i d B a s eP a i r s . add ( ( s . c2 , c2 ) ) ;

}
}
v a l i dB a s eP a i r s . add ( ( s . c1 , s . c2 ) ) ;

}
r e t u r n t r u e ;

}

2.2.2 Method getCayleyConfigurationSpace()

The method implements the ELR algorithm [2] to generate and return the Cayley configuration space of
the calling TDLinkage instance on the current base non-edge. The generated Cayley configuration space is
also stored in the cayleyConfigurationSpace field of the calling TDLinkage instance. As pointed out in [2],
computation of the Cayley configuration space is NP-hard, and this method can take time exponential in
|V |.

Pseudocode for getCayleyConfigurationSpace() :

Cay l e yCon f i g u r a t i o nSpa c e g e tCa y l e yCon f i g u r a t i o nSpa c e ( ) {
f o r ( each c o n s t r u c t i o n s t ep s ) {

f o r ( each extreme l i n k a g e R e a l i z a t i o n r at s t ep s ) {
d i s t a n c e = r . l e n g t h ( baseNonedge ) ;
f o r ( each complete s o l u t i o n type t compat i b l e w i th the p a r t i a l s o l u t i o n type o f r )

c a n d i d a t eEndp o i n t L i s t s [ t ] . add ( d i s t a n c e ) ;
}

}

f o r ( ( So lu t i onType : t , L i s t : l ) : c a n d i d a t eEndp o i n t L i s t s ) {
s o r t ( l ) ;
occ s = new Or i e n t e dCay l yCon f i g u r a t i o nSpa c e wi th So lu t i onType t ;
f o r ( double cu r : l ) {

double prev = the po i n t b e f o r e cu r i n l ;
double next = the po i n t a f t e r cu r i n l ;
boolean P = r e a l i z a b l e ( ( p r ev + cur ) / 2 , t ) ;
boolean N = r e a l i z a b l e ( ( cu r + next ) / 2 , t ) ;
i f ( !P && !N) {

// cur i s an i s o l a t e d po i n t
occs . a p p e n d I n t e r v a l ( cur , cu r ) ;

} e l s e i f (P && !N) {
// cur i s end o f i n t e r v a l
occs . a p p e n d I n t e r v a l ( l a s tEndpo i n t , cu r ) ;
i n t e r v a l S t a r t = n u l l ;

} e l s e i f ( !P && N) {
// cur i s s t a r t o f i n t e r v a l
i n t e r v a l S t a r t = cur ;

} // e l s e : cu r i s i n midd le o f i n t e r v a l
}
t h i s . c a y l e yCon f i g u r a t i o nSp a c e . a ddOr i e n t edCay l e yCon f i g u r a t i o nSpac e ( occ s ) ;

}
r e t u r n t h i s . c a y l e yCon f i g u r a t i o nSp a c e ;

}
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2.2.3 Methods findPath(r1:Realiztion, r2:Realization), findComponent(r:Realization), findAllCompo-
nents(l:TDLinkage)

These methods implement the Continuous motion algorithm [2, Theorem 3]. Method findPath(r1,r2) returns
an instance of ContinuousMotion representing the continuous motion path between realizations r1 and r2,
which are realizations of the same linkage. Method findComponent(r) returns an instance of Continuous-
Motion, which is the connected component in the realization space containing the realization r. Method
findAllComponents(l) returns a list of ContinuousMotion instances representing all connected components in
the realization space of the linkage l.

Both findPath() and findComponent() have time complexity linear in the number of oriented Cayley config-
uration space endpoints contained in the ContinuousMotion instance returned. Method findAllComponents()
has time complexity linear in the total number of endpoints of all oriented Cayley configuration spaces [1,
Theorem 3].

Pseudocode for findComponent() (findPath() is implemented similarly):

s t a t i c Cont inuousMot ion f indComponent ( R e a l i z a t i o n r ) {
s t a r t I n t = the O r i e n t e d I n t e r v a l c o n t a i n i n g the Cay l ey c o n f i g u r a t i o n o f r ;
component . o r i e n t e d I n t e r v a l s . add ( s t a r t I n t ) ;

O r i e n t e d I n t e r v a l c u r I n t = s t a r t I n t ;
double e n d l f = c u r I n t . l owe r ;
w h i l e ( t r u e ) {

c u r I n t = ( e n d l f == c u r I n t . l owe r ? c u r I n t . n e x t I n t e r v a l L ow e r : c u r I n t . n e x t I n t e r v a l U pp e r )
i f ( c u r I n t == s t a r t I n t )

r e t u r n component ;
e n d l f = ( e n d l f == c u r I n t . l owe r ? c u r I n t . upper : c u r I n t . l owe r ) ;
component . o r i e n t e d I n t e r v a l s . add ( c u r I n t ) ;

}
}

The method findAllComponents() is implemented by iterating over all intervals in every OrientedCayey-
ConfigurationSpace and calling findComponent:

L i s t f i ndA l lComponent s ( TDLinkage t ) {
L i s t l i s t = new L i s t ( ) ;

// 1 . l i s t e v e r y i n t e r v a l s i n a l l o r i e n t e d Cay l ey c o n f i g u r a t i o n space s .
Set i n t e r v a l S e t = new Set ( ) ;
f o r ( O r i e n t e dCay l e yCon f i g u r a t i o nSpa c e oc : t . g e tCa y l e yCon f i g u r a t i o nSpa c e ( ) )

i n t e r v a l S e t . add ( oc . o r i e n t e d I n t e r v a l s ) ;

// 2 . f o r each i n t e r v a l :
w h i l e ( ! i n t e r v a l S e t . i sEmpty ( ) ) {

// (1 ) g en e r a t e connected component .
O r i e n t e d I n t e r v a l i n v = an o r i e n t e d i n t e r v a l from i n t e r v a l S e t ;
Cont inuousMot ion component = f i n d the component c o n t a i n i n g i n v ;
l i s t . add ( component ) ;

// (2 ) remove the i n t e r v a l s pas sed by the component from the l i s t o f i n t e r v a l s
f o r ( O r i e n t e d I n t e r v a l n : component . o r i e n t e d I n t e r v a l s )

i n t e r v a l S e t . remove ( n ) ;
}
r e t u r n l i s t ;

}

2.2.4 Method findNearestRealizations(c1: ContinuousMotion, c2: ContinuousMotion)

The method implements the Closest pair algorithm [1, Theorem 5(ii)]. The method returns the pair of two
nearest realizations between the two connected components c1 and c2 of the realization space of a linkage,
using the Cayley distance measure. The time complexity O(k2|V |), where k is the size of the list returned
by getRealizations(), which is a list of sample realizations in the connected component.
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Pseudocode for findNearestRealizations():

s t a t i c Pa i r f i n dN e a r e s t R e a l i z a t i o n s ( Cont inuousMot ion c1 , Cont inuousMot ion c2 ) {
double n e a r e s tD i s t a n c e = Double . POSITIVE INFINITY ;
R e a l i z a t i o n r e s u l t 1 = n u l l , r e s u l t 2 = n u l l ;
f o r ( R e a l i z a t i o n r1 : c1 . g e t R e a l i z a t i o n s ( ) ) {

f o r ( R e a l i z a t i o n r2 : c2 . g e t R e a l i z a t i o n s ( ) ) {
double d i s = r1 . c a y l e yD i s t a n c e ( r2 ) ;
i f ( d i s < n e a r e s tD i s t a n c e ) {

r e s u l t 1 = r1 ; r e s u l t 2 = r2 ;
n e a r e s tD i s t a n c e = d i s ;

}
}

}
r e t u r n ( r e s u l t 1 , r e s u l t 2 ) ;

}
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