
Documentation of

ReLIADiff. A C++ Software Package For Real Laplace

transform Inversion based on Algorithmic Differentiation ∗

LUISA D’AMORE†, ROSANNA CAMPAGNA†, VALERIA MELE†
ALMERICO MURLI‡

† University of Naples Federico II, Via Cintia, Naples, Italy
‡ CMCC -Lecce, Italy and SPACI

RELIADIFF SOFTWARE

∗Accompanying the paper in [1]

Contents

1 Purpose 2

2 Outline of use 2

3 Specification 4

4 Arguments 4
4.1 Input Parameters . 4
4.2 Output Parameters . 6
4.3 Function Return Value . 7

5 Calling sequence 7

6 An example of Calling Program 7
6.1 Output of the Calling Program Example . 10

7 How To run the Calling Program Example 10
7.1 On a Linux system, with a g++ compiler installed 10
7.2 On a Windows system, with Bloodshed DEV-C++ IDE v. 4.9.9.2 installed . . . 11

8 Analysis of the Diagnostic parameters 11

9 Remarks on the behavior 13

10 Content of the directory C++ files/src 13

1

1 Purpose

RELIADIFF is a fully automatic software which computes the inverse (f) of a Laplace transform
function (F) computable on the real axis. It uses the software FADBAD/TADIFF [2] implementing
the Algorithmic Differentiation. The mathematical background and general information about
its performance are described in the accompanying paper [1].

RELIADIFF is a software package written in C++. To compile RELIADIFF and any software
using RELIADIFF you need a C++ compiler. If you do not have one:

• On a Linux system we suggest to install GCC (GNU Compiler Collection,
http://www.gnu.org/software/gcc/gcc-4.6/).

• On a Windows system we suggest to install Bloodshed DEV-C++ IDE (v. 4.9.9.2,
http://www.bloodshed.net/dev/devcpp.html).

2 Outline of use

The package consists essentially of the routine RELIADIFF.

To use the package, the user must provide

• a context (such as a Main program) calling RELIADIFF;

• a function subprogram evaluating the transform F (s), a double precision (in sense of TADIFF
[2]) valued function of a double precision (in sense of TADIFF) argument.

Users have to include the header RELIADIFF.h.

The routine RELIADIFF needs as input

2

• the function to invert F ;

• the value of x ≥ 0 where the inverse function f has to be computed;

User may tune the work of the software providing also (optionally):

• the value of sigma0 (or an approximated value of it), the convergence abscissa of F ;

• a tolerance to the accuracy on f(x);

• the maximum number of series coefficients;

• the singularity at zero of F ;

• the choice of printing all the used series expansion coefficients.

The software provides as output

• the inverse Laplace function f evaluated at the input point x;

• the estimate of the absolute error on f ;

• the estimate of the relative error on f ;

• some diagnostics parameters:

– the “optimal” number of series coefficients to use;

– the number of series coefficients used to compute the “optimal” value;

– a flag needed to interpret the work of the software.

3

3 Specification

int RELIADIFF (double x,

T<double> (*fz)(T<double>),

char* szero,

char* pcoeff,

char* sigma0,

char* tol,

char* nmax,

double *ILf,

double *absesterr,

double *relesterr,

int *flag,

int *nopt,

int *ncalc,

)

4 Arguments

4.1 Input Parameters

x : double precision
it contains value at which the Inverse Laplace Transform is required.
It has to be greater or equal to zero.

fz : (TADIFF) double precision1 function pointer
it contains the name of the Laplace Transform function.
This function shall be written in C++

szero: string
It contains

• a parameter, interpreted as integer, specifying if the transform has a singularity
at zero.
IT CAN BE 0 (there is nott) OR GREATER (there is).

or

• the character “n”, to mean that the user does not want to provide it.
It will be posed to the default value (szero= 0).

1See [2] to know about the class T<double>, that extends the C++ type double.

4

pcoeff: string
it contains

• a parameter, interpreted as integer, specifying the printing or not of the coeffi-
cients in a file at the end of work.
IT CAN BE 0 (do not print) OR GREATER (print).

or

• the character “n”, specifying that the user does not want to provide it.
It will be posed to the default value (pcoeff= 0).

sigma0 : string
It contains

• the abscissa of convergence of f : it will be interpreted as double precision.

• If it is less than zero, it will be posed to zero.

or

• the character “n”, specifying that the user does not want to provide it.
It will be posed to the default value (sigma0= 1).

tol : string
It contains

• the required accuracy on f , interpreted as double precision;

– if it is greater than 1 it will be posed to the default value (tol = 10−3);

– if it is less than the machine precision (single precision), it will be posed to the
value of the machine precision.

or

• the character “n”, specifying that the user does not want to provide it.
It will be posed to the default value (tol= 10−3).

nmax: string
It contains

• the maximum number of Laguerre series terms, interpreted as integer.

– if nmax < 8, it is posed equal to a default value (nmax = 2000)

– if nmax > MaxLength = 5000, it is posed at MaxLength= 5000.

or

5

• the character “n”, specifying that the user does not want to provide it.
It will be posed equal to the default value (nmax= 2000).

4.2 Output Parameters

szero: string
It contains the value actually used by the software in computation,
it is interpreted as integer.

pcoeff: string
It contains the value actually used by the software in computation,
it is interpreted as integer.

sigma0 : string
It contains the value actually used by the software in computation,
it is interpreted as double precision.

tol : string
It contains the value actually used by the software in computation,
it is interpreted as double precision.

nmax: string
It contains the value actually used by the software in computation,
it is interpreted as integer.

ILf : double precision
It contains the computed value of f at x.

absesterr : double precision
It contains the estimate of the absolute error on f .

relesterr: double precision
It contains the estimate of the relative error on f .

flag: integer (DIAGNOSTIC)
It contains an information on the obtained accuracy.

nopt: integer (DIAGNOSTIC)
It contains the found “optimal” number of Laguerre series terms.

ncalc integer (DIAGNOSTIC)
It contains the total number of terms calculated by the software
to find the “optimal” one.

6

4.3 Function Return Value

Function return: integer.
the function returns a diagnostic on the input data.
if it is equal to 1, it means that the routine ended without any output
because the input x was less than 0.

5 Calling sequence

The variable declarations should be as follows:

double x;

T<double> (*fz)(T<double>);

char szero[];

char pcoeff[];

char sigma0[];

char tol[];

char nmax[];

double ILf;

double absesterr;

double relesterr;

int flag;

int nopt;

int ncalc;

int ierr;

The RELIADIFF call is then:

ierr= RELIADIFF (x, fz, pcoeff, sigma0, tol, nmax, szero, &ILf,

&absesterr, &relesterr, &flag, &nopt, &ncalc);

6 An example of Calling Program

A sample calling program to invert the function

F (z) =
1

z4 − a4
, a =

3

5

at the point x = 2.5, without giving any optional input and printing results at screen is listed
below.

7

#include ”RELIADIFF.h”
T<double> fzTest(T<double> z) {

return 1./(pow(z,4)−pow(3./5.,4));
}
int main(int argc,char ∗∗argv){
/∗RELIADIFF INPUT∗/

double x=2.5; //Inverse Function evaluation point(s)
T<double> (∗fz)(T<double>); //Function F Pointer

/∗RELIADIFF OPTIONAL INPUT: we don’t give any∗/
char szero[10]=”n”;
char pcoeff[10]=”n”;
char sigma0[10]=”n”;
char tol[10]=”n”;
char nmax[10]=”n”;

/∗RELIADIFF OUTPUT∗/
double absesterr; //absolute error estimate
double relesterr; //relative error estimate
double ILf; //Inverse Function f computed
int flag; //diagnostics on the result
int nopt; //diagnostics on the software work
int ncalc; //diagnostics on the software work
int ierr; //diagnostics on the software work

/∗AUXILIARY VARIABLE∗/
char name[20]=””;

fz = fzTest;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CALLING RELIADIFF ∗∗∗/
ierr=RELIADIFF(x,fz,szero,pcoeff,sigma0,tol,nmax,&ILf,&absesterr,&relesterr,&flag,&nopt,&ncalc);
/∗∗/

switch(ierr){
case 1:

printf(”\nx=%f − RELIADIFF stopped: x<0.0!\n It must be x>=0\n\n”,x);
break;

default:
printf(”Used Tolerance on accuracy: %e;\n”,atof(tol));
printf(”Used abscissa of convergence on F: %e;\n”,atof(sigma0));
printf(”Used maximum number of Laguerre series coefficients: %d;\n”,atoi(nmax));
printf(”Singularity in zero: ”);

if(atoi(szero)) printf(” yes;\n”);
else printf(” no;\n”);
printf(”Used Taylor coefficients printed: ”);
if(atoi(pcoeff)){

sprintf(name,”coeff x%.1f.txt”,x);
printf(” yes, they are in file %s;\n”,name);

}
else printf(” no;\n”);

8

printf(”\n TABLE\n”);
printf(”−−−\n”);
printf(”| x | f comp | estabserr | estrelerr | Nopt | Ncal |FLAG|\n”);
printf(”−−−\n”);

printf(”| %4.2e | %14.8e | %9.3e | %9.3e | %5d | %5d | %2d |\n”, x, ILf, absesterr, relesterr, nopt, ncalc, flag);
break;

} /∗endswitch∗/
printf(”\n∗∗∗\n”);
printf(” WARNING\n”);
printf(”−−−−Calculated errors are just errors estimate, they are not errors bounds−−−\n”);
printf(”∗∗∗\n”);
printf(”\n\nProgram terminated. Please press a key to exit.”); getchar();
return 0;

}
/∗END OF MAIN∗/

9

6.1 Output of the Calling Program Example

Running the example program users will obtain at screen the following output.

Used Tolerance on accuracy: 1.000000e-03;

Used abscissa of convergence on F: 1.000000e+00;

Used maximum number of Laguerre series coefficients: 2000;

Singularity in zero: no;

Used Taylor coefficients printed: no;

TABLE

| x | f_comp | estabserr | estrelerr | Nopt | Ncal |FLAG|

| 2.50e+00 | 2.61987232e+00 | 3.210e-04 | 1.225e-04 | 12 | 12 | 0 |

WARNING

----Calculated errors are just errors estimate, they are not errors bounds-----

Program termineted. Please press a key to exit.

7 How To run the Calling Program Example

The package directory is C++ files/src and it contains the above Calling Program
Example, and two directory to execute it on either a Linux or a Windows system.

7.1 On a Linux system, with a g++ compiler installed

To easy obtain the previous output, user can execute the script
CallingProgramExecution-Linux g++/compiling a CallingProgram.sh.
The script will

1. create a RELIADIFF library with the command make

2. compile the calling program,

3. link it to the RELIADIFF library

4. execute the executable file.

10

7.2 On a Windows system, with Bloodshed DEV-C++ IDE v. 4.9.9.2
installed

(To download DEV, visit: http://www.bloodshed.net/dev/devcpp.html2)

To easy obtain the previous output, user can open the file
CallingProgramExecution-Windows DevC++5/ExampleCallingRELIADIFFproject.dev

then click on Execute → Compile & Run.
It will create in its directory the following files:

• ExampleCallingRELIADIFFproject.layout

• ExampleCallingRELIADIFFproject.exe (executable)

• Makefile.win

• phi.o

• RELIADIFF.o

• SimpleCallingProgramExample.o

8 Analysis of the Diagnostic parameters

flag: it is about the obtained accuracy.

flag = 0: corresponds to:

– absesterr < tol

– relesterr < tol

Both the absolute and the relative error estimates are smaller than tolerance, so the
software fully satisfies the required accuracy.
This means that the software can obtain more accurate results if user requires a smaller
value for the tolerance.

flag = 1: corresponds to the case of output:

– absesterr is the minimum obtained value, but greater than tolerance.

– relesterr is the minimum obtained value, but greater than tolerance.

This means that within nmax terms of the series expansion, the algorithm cannot sat-
isfy the required accuracy. So, it provides the numerical result within the maximum
attainable accuracy with no more than nmax terms, and nopt will be the number of
terms at which such minimum is reached (eventually different from ncalc, that is the
total number of calculated coefficients).
Moreover, this means that the series seems to converge too slowly or to diverge.
So, user can try to obtain a result more accurate tuning some of the optional param-
eters: sinf , sigma0, nmax.
User is also invited to verify if the Laplace transform function satisfies algorithm’s
requirements.

2Bloodshed Dev-C++ is a full-featured Integrated Development Environment (IDE) for the C/C++ pro-
gramming language. It uses Mingw port of GCC (GNU Compiler Collection) as its compiler. It creates native
Win32 executables, either console or GUI. Dev-C++ can also be used in combination with Cygwin.
Dev-C++ is Free Software (also referred as Open Source), and is written in Delphi
[http://www.bloodshed.net/dev/].

11

flag = 2: corresponds to the case of output:

– absesterr < tol.

– relesterr is the minimum obtained value, but greater than tolerance.

Only the absolute error estimate is smaller than the user’s required accuracy.
This means that within nmax terms of the series expansion, the algorithm cannot
satisfy the required accuracy. So, it provides the numerical result within the maximum
attainable accuracy with no more than nmax terms, and nopt will be the number of
terms at which such minimum is reached (eventually different from ncalc, that is the
total number of calculated coefficients).
Moreover, this means that the inverse function f rapidly decreases towards zero.
User can try to obtain a result more accurate tuning some of the optional parameters:
sinf , sigma0, nmax.

flag = 3: corresponds to the case of output:

– absesterr is the minimum obtained value, but greater than tolerance.

– relesterr < tol.

Only the relative error estimate is smaller than the user’s required accuracy.
This means that within nmax terms of the series expansion, the algorithm can satisfy
the required accuracy, but not for the relative error. This means also that the inverse
function f increases rapidly.

• RETURN V ALUE:

= 1: x < 0, the run stopped without working.

= 0: RELIADIFF worked properly.

• ncalc/nopt:

– ncalc is the maximum number of terms of the Laguerre series expansion calculated
by the algorithm.

– nopt is the number of terms of the Laguerre series expansion that gives the nu-
merical result within the maximum attainable accuracy, less or equal to nmax
(the required maximum number of terms).

You can find one of three cases:

a. nopt = ncalc < nmax

The computed value of the inverse Laplace function agrees with the true
one within log(tol) significant and decimal digits. This value is obtained
calculating nopt terms of the Laguerre series expansion. It should correspond
to flag = 0 or flag = 3.

b. nopt < ncalc = nmax

Within nmax terms of the Laguerre series expansion, the algorithm cannot
satisfy the user’s required accuracy, and the series seems to diverge. The al-
gorithm provides a numerical result within the maximum attainable accuracy,
and nopt is the number of terms at which such maximum is reached. It should
correspond to flag = 1 or flag = 2.

c. nopt = ncalc = nmax

This occurs if:

Within nmax terms of the Laguerre series expansion, the algorithm cannot
satisfy the user’s required accuracy, but the series could converge, even if

12

very slowly, or diverge: the algorithm provides numerical result with the
maximum attainable accuracy reached within nmax terms of the Laguerre
series expansion. If the series diverges, nopt accidentally corresponds to
nmax. It should correspond to flag = 1 or flag = 2.

or if:

the algorithm can satisfy the user’s required accuracy, within exactly nmax
terms of the Laguerre expansion, so the series seems to converge, even if
quite slowly: the algorithm provides numerical result within the required
accuracy, reached within nmax terms of the Laguerre series expansion. It
should be flag = 0 or flag = 3.

9 Remarks on the behavior

(1) The algorithm works optimally if F is

– such that it can be expressed as F (z) = z−1G(z), where G is analytic at infinity,

– without a singularity at zero neither a singularity at infinity,

– with abscissa of convergence sigma0,

– such that it may be evaluated on the real axis with a preassigned limited precision,
at most equals to the machine precision.

(2) The algorithm can work good even if:

– F has a singularity at zero,

– there is a small error on the estimate of sigma0.

(3) The algorithm works optimally if the Inverse function (f) is infinitely differentiable for all
x > 0. If user knows its expression, it is reasonable to verify this requirement.

10 Content of the directory C++ files/src

The package directory is C++ files/src and it contains the following files:

RELIADIFF.c main routine for the inversion.

phi.c containing the routines needed to compute the Phi function [1].

RELIADIFF.h containing some header inclusions (stdio, math, tadiff . . .), a constant definition
and the prototypes of the function defined in phi.c and RELIADIFF.c.

13

fadbad a directory containing the software FADBAD/TADIFF headers (authors Ole Stauning and
Claus Bendtsen [2]), used to implement the Algorithmic Differentiation.

Makefile to create a library to link to when compiling an application calling RELIADIFF (on
a Linux system).

• The command make creates the library libreliadiff.a

• The command make clean deletes the libreliadiff.a file

SimpleCallingProgramExample.c containing a simple example of calling program for the RE-
LIADIFF routine.

CallingProgramExecution-Linux g++ a directory containing a shell script to compile and
execute the provided example of calling program, on a Linux system with a g++ compiler.

• compiling a CallingProgram.sh script containing an example of how to compile and
execute a C/C#/C++ code using the RELIADIFF routine.

CallingProgramExecution-Windows DevC++5 a directory containing a DEV-C++ project to
compile and execute the provided example of calling program, on a Windows system with
Bloodshed DEV-C++ IDE v. 4.9.9.2 installed.

• ExampleCallingRELIADIFFproject.dev dev-project containing an example of how
to compile and execute a C/C#/C++ code using the RELIADIFF routine. Option
given to the project:

– Type: Win32 console

– Executable Output Directory:

..\CallingProgramExecution-Windows_DevC++5

– Object File Output Directory:

..\CallingProgramExecution-Windows_DevC++5

14

References

[1] A. Murli, L. D’Amore, V. Mele, R. Campagna, ReLIADiff. A C++ Software Package For
Real Laplace transform Inversion based on Algorithmic Differentiation, ACM Transactions
on Mathematical Software, 0, 0, Article 0 (0000), 20 pages.

[2] C. Bendtsen, O. Stauning, Tadiff, a flexible C++ package for Automatic Differentiation
using Taylor series expansion, technical report IMM-REP-1997-07, Department of Mathe-
matical Modelling, Technical University of Denmark, 2800 Lyngby, Denmark, 1997.

15

