
in gamma sequence documentation

Ian Thompson

Contents

1 Introduction 2

1.1 Files provided . 2

2 Compiling 2

3 Testing and using the code 3

4 Generating additional data 3

5 Maple code 3

5.1 binary float.mpl . 3
5.2 in gamma.mpl . 4
5.3 in gamma precomp.mpl . 5
5.4 in gamma test.mpl . 5

6 Fortran code 6

6.1 in gamma sequence.f90 . 6
6.2 in gamma test.f90 . 7

1

June 29, 2012 2

1 Introduction

This manual describes the implementation of the algorithm in [1], which computes a
sequence of values Sn0

(x), . . . , Sn1
(x), where x ≥ 0, and n0 and n1 are arbitrary integers

with n1 ≥ n0. The function Sn(x) is related to the lower incomplete gamma function
via

γ(n+ 1

2
,−x) = exi(−1)nxn+1/2Sn(x). (1)

Since Sn(x) is real, γ(n + 1

2
,−x) is purely imaginary, the upper incomplete gamma

function can be computed using the identity

Γ(n+ 1

2
, x) = Γ(n+ 1

2
)− γ(n+ 1

2
, x), (2)

without any loss of significant digits.

1.1 Files provided

• in gamma sequence.f90

• in gamma test.f90

• binary float.mpl

• in gamma.mpl

• in gamma precomp.mpl

• in gamma test.mpl

• in gamma precomp.dat

• in gamma test.dat

2 Compiling

The Fortran 2003 code for the algorithm is contained in the file in gamma sequence.f90.
This contains no main program, and so a flag (usually -c) is required to prevent the
compiler from attempting to produce an executable. Some compilers treat the features
introduced in Fortran 2003 as extensions; it is desirable suppress warnings concerning
these. Two directives are used to strip out diagnostic code at compile time, and so a
flag may be required to invoke the preprocessor. Alternatively, the file extension can be
changed (usually to .F90 or .ff90), so that the preprocessor is invoked automatically.
Full details of the preprocessor and the means of invoking it are provided in the compiler
documentation.1 The recommended flags for compiling in gamma sequence.f90 are as
follows:

• NAG Fortran compiler: -c -f2003 -fpp

• Intel Fortran compiler: -c -stand=f03 -fpp=1

• Gnu Fortran compiler (gfortran): -c -std=f2003 -cpp

1
Intel: http://software.intel.com/en-us/articles/intel-fortran-composer-xe-documentation

NAG: http://www.nag.co.uk/nagware/np/r53_doc/index

Gnu: http://gcc.gnu.org/onlinedocs/gfortran/

http://software.intel.com/en-us/articles/intel-fortran-composer-xe-documentation
http://www.nag.co.uk/nagware/np/r53_doc/index
http://gcc.gnu.org/onlinedocs/gfortran/

June 29, 2012 3

The flags -DDIAGNOSTIC=true and -DSUPERDIAGNOSTIC=true can be used to activate
the diagnostic code. These options cause the program to output information during
calculations, and have no effect on the results. The testing program in gamma test.f90

contains no preprocessor directives, and so only the second flag (i.e. -f2003 or the
equivalent) is recommended.

3 Testing and using the code

Sequences of values of the function Sn(x) for n = n0, . . . , n1 can be generated by calling
the routine scaled in gamma (§6.1). For each n < 0, there is a unique positive number
xn such that Sn(x) = 0, and the algorithm requires that the machine numbers closest
to these values, which we denote by x̃n, are provided in the file in gamma precomp.dat,
along with the associated values of Sn(x). If data is available for n = −1, . . . ,−M ,
then the maximum allowable value for x is M − 0.18. This restriction does not apply
if n0 ≥ 0. The file in gamma precomp.dat that accompanies the code provides data for
M = −201.
The program in gamma test provides a simple front end which can be used to test the

algorithm. It prompts the user to choose whether to enter values for n and x manually,
or to perform an exhaustive test using data from the file in gamma test.dat, which is
generated by the Maple program in gamma test.mpl (§5.4).

4 Generating additional data

The maximum allowable value for x can be increased by calculating additional data using
the Maple program in gamma precomp.mpl (§5.3). Likewise, additional testing data can
be generated using the Maple program in gamma test.mpl (§5.4). Before using these
programs, both binary float.mpl (§5.1) and in gamma.mpl (§5.2) must be executed.
All Maple code should be placed in the same directory, and the current working directory
for Maple should be set to this location. The currentdir command can be used to set
the current working directory.

5 Maple code

5.1 binary float.mpl

This module provides mechanisms for converting Maple’s software decimal floats to and
from binary floats, and for manipulating binary floats within Maple. A binary float is a
number of the form

B = sg× mantis× 2xp+1−mantis length, (3)

where sg = 1 or −1, and mantis length is a fixed parameter. Inside the module, binary
floats are represented as ordered triples of the form (sg,xp,mantis).

Parameters

• nbits

The number of bits used in representing a real number as a binary float.

• mantis length

The length of the mantissa, including the hidden bit.

June 29, 2012 4

• emax

The maximum permitted value for the exponent.

For double precision, nbits = 64, mantis length = 53 and emax = 1023 [2]. The mini-
mum exponent value is always 1− emax [2]. The binary floatmodule does not compute
subnormal numbers, and so the smallest positive number is obtained by setting all visible
bits in the significand to zero, and setting xp = 1− emax.

Procedures

• nearestBinaryFloat(x)

Returns the binary float that is closest to the real number x.

• toFraction(sg , xp , mantis)

Converts the binary float represented by the ordered triple (sg,xp,mantis) to a
fraction using the formula (3).

• stepBinaryFloat(sg , xp , mantis, direction)

If direction = 1, this function returns the smallest binary float that exceeds the
number represented by the ordered triple (sg,xp,mantis). If direction = −1,
the largest binary float that is smaller than (sg,xp,mantis) is returned.

• transfer(sg , xp , mantis)

Mimics the effect of the Fortran function call transfer(B , 1 li), where B is a
real number given by (3), and li is a kind type parameter that denotes an nbits

bit integer. The return value is an integer t whose representation as a sequence of
nbits binary bits is identical to that of the real number B. It is assumed that t is
stored in two’s complement format, B is stored in the format specified by [2], and
that the endianess for integers and reals is the same.

5.2 in gamma.mpl

Provides routines for computing Sn(x) to arbitrary precision and locating its zeros.

Parameters

• d step

The number of additional significant digits to include when it is necessary to in-
crease the accuracy of a computation.

Procedures

• S(n , x , d)

Attempts to compute Sn(x) to d significant decimal digits using [1, (28)].

• xS(n , x , d)

Attempts to compute exSn(x) to d significant decimal digits using [1, (12)].

June 29, 2012 5

• double_calc_S(n , x , d)

Repeatedly computes Sn(x) using S(n , x , d) and xS(n , x , d), in-
creasing the number of significant digits used until the two agree to d significant
decimal digits.

• S_root(n , d)

Returns an approximation to the location of the point at which Sn(x) evaluates to
zero, accurate to at least d significant decimal digits.

5.3 in gamma precomp.mpl

This program computes data for use by the Fortran subroutine s by continuation (see
§6.1), and outputs this to the file in gamma precomp.dat, which will be overwritten if
it already exists. See [1, §7] for further details.

Parameters

• nmin

The minimum value of n for which data is generated. The maximum value is −1.

5.4 in gamma test.mpl

This program computes Sn(x) for a range of parameter values. The resulting data is con-
verted to integer form using transfer (§5.1) and output to the file in gamma test.dat,
which will be overwritten if it already exists. The data contained in in gamma test.dat

is used by the Fortran program in gamma test.f90 (§6.2).

Parameters

• n0

The minimum value of n for which data is generated.

• n1

The maximum value of n for which data is generated.

• xmin

The minimum value of x for which data is generated.

• xmax

The maximum value of x for which data is generated.

• xsteps

The number of steps in x.

June 29, 2012 6

6 Fortran code

6.1 in gamma sequence.f90

This module implements the algorithm described in [1]. The only public entity is the
subroutine scaled in gamma, and it should be noted that the other procedures are in-
tended for internal use only, and therefore they perform no checks on the validity of their
arguments.

Parameters

• dp

Kind type parameter for real numbers. The number of binary bits used to store
a variable of type real (dp) must be equal to the parameter nbits in the Maple
code binary float.mpl (§5.1).

• li

Kind type parameter for integers. The number of bits used to represent variables
of types integer (li) and real (dp) must be equal.

Procedures

• subroutine scaled in gamma(n0 , n1 , x , res)

integer , intent (in) :: n0 , n1

real (dp) , intent (in) :: x

real (dp) , intent (out) , allocatable , dimension (:) :: res

Computes a sequence of values of Sn(x) for n = n0, . . . , n1, for n1 ≥ n0 and x ≥ 0,
and returns the result in the allocatable array res. If n0 < 0 , then x must not
exceed M − 0.18 (see §3).

• subroutine error(proc name , msg)

character (*) , intent (in) :: proc_name , msg

Reports that procedure proc name has encountered an error, outputs the message
msg and terminates execution.

• real (dp) function sm1 series1(x)

real (dp) , intent (in) :: x

Calculates S
−1(x) using [1, (12)], under the assumption that 0 ≤ x ≤ 1.

• real (dp) function s series2(n , x)

integer , intent (in) :: n

real (dp) , intent (in) :: x

June 29, 2012 7

Calculates Sn(x) using [1, (28)].

• real (dp) function s by continuation(n , x)

integer , intent (in) :: n

real (dp) , intent (in) :: x

Uses analytic continuation to compute Sn(x), as described in [1, §5].

• subroutine read precomp data()

Reads the data contained in the file in gamma precomp.dat into memory.

6.2 in gamma test.f90

A simple testing program. See §3 for details.

References

[1] I. Thompson. Computation of incomplete gamma functions with negative arguments.
Submitted for consideration with this code, 2011.

[2] IEEE Standard for Floating-Point Arithmetic. Technical report, Microprocessor
Standards Committee of the IEEE Computer Society, 3 Park Avenue, New York,
NY 10016-5997, USA, August 2008.

	Introduction
	Files provided

	Compiling
	Testing and using the code
	Generating additional data
	Maple code
	binary_float.mpl
	in_gamma.mpl
	in_gamma_precomp.mpl
	in_gamma_test.mpl

	Fortran code
	in_gamma_sequence.f90
	in_gamma_test.f90

