
Detecting Feature Interactions in the Terrestrial
Trunked Radio (TETRA) Network using Promela and

Xspin ?

Carl B. Adekunle and Steve Schneider

Department of Computer Science,
Royal Holloway, University of London,

Egham Hill, Egham,
Surrey, TW20 0EX,
United Kingdom.

Tel: +44 (0)1784 443912
Fax: +44 (0)1784 439786

email:c.adekunle@dcs.rhbnc.ac.uk

Abstract. The problem caused by feature interactions serve to delay and increase
the costs of introducing features to existing networks. We introduce a three stage
technique that detects interactions in the TETRA network. Promela is used to
model the network and features and its requirements are specified using linear
temporal logic. The Xspin toolkit is used to verify and validate the model against
its requirements.

1 Introduction

Telecommunications networks comprise numerous features that add extra functionali-
ties on top of the basic services provided. With new features being incrementally added,
it is unclear how they interact. For example, will the addition of a feature interfere with
the behaviour of existing features? Or perhaps the new feature demonstrates unexpected
behaviour as a result of integration with existing features. The problem caused by these
feature interactions serve to delay and increase the costs of introducing features to ex-
isting networks. The problem is exacerbated because many features are designed and
implemented by different companies across global networks. Assumptions are made
about network implementations and consequently the behaviour of features differ. The
feature interactions field [KK98] attempts to avoid, detect and resolve interactions at
various stages of the features life cycle.

We research feature interactions in Terrestrial Trunked Radio1 (TETRA)[TR95],
which is a digital private mobile radio network specified by the European Telecommuni-
cations Standard Institute (ETSI). In TETRA, features are referred to as supplementary
services though, for the purpose of this paper, we use the term features.

The TETRA network and features are modelled using the Protocol Meta language
(Promela) [Hol90] and we specify requirements that the model should satisfy using

? Research funded by Motorola.
1 Formally Trans-European Trunked Radio.



linear temporal logic [MP91]. The language of temporal logic is used to specify and
reason about properties such as safety and liveness at an abstract level. We use the
Xspin toolkit to verify the model for general properties such as deadlock and to validate
the model against its requirements.

In this paper, we present and exploit a three stage technique to detect feature inter-
actions. The technique is general enough to be applied to other languages and toolkits.
It relies on the validation of requirements being completed for the first two stages to
detect interactions in the final stage.

The rest of the paper is organised as follows: section 2 discusses feature interactions
in more detail and outlines the three approaches used to tackle the problem. Section 3
introduces TETRA and highlights the areas of the network analysed for interactions.
It also discusses the information extraction process used to decide what operations to
model. In section 4 we summarise why we use Promela and Xspin to model the TETRA
network and features. We also give an overview of temporal logic and the types of
requirements it can be used to specify. The technique used to detect feature interactions
is presented in section 5 and we demonstrate its effectiveness in section 6. Section 7
presents our conclusion.

2 Feature Interactions

Features in telecommunication networks add extra functionality on top of the basic ser-
vices provided. Examples of features are Call Forwarding Unconditional (CFU) [Eura]
and Barring of Incoming Calls (BIC) [Eurb]. Call Forwarding Unconditional allows its
subscriber to divert all incoming setup requests to a designated mobile other than it-
self. Barring of Incoming Calls screens all incoming setup requests to the subscriber
against a barred list. If the calling mobile is on that list, it is prevented from connect-
ing to the subscriber. When both features are invoked by their subscriber, it is not clear
what should happen to an incoming setup request from a calling mobile that is on the
barred list. For example, mobile C subscribes to both features and has mobile B as its
divert for the CFU and mobile A as barred on the BIC. Mobile A then makes a setup
request to join C, should the CFU forward mobile A to B or should A be barred from not
only connecting to C but also to B? Such uncertainty is a contributing factor in feature
interactions.

The feature interactions field has arisen as a result of the need to detect and resolve
interactions using three approaches, which are:

Avoidance - Involves using an architecture to prevent interaction by tackling issues
such as resource contention. The features are specified, implemented and tested
within the architecture [JP98].

Detection - Employs the use of model checking techniques such as simulation, verifi-
cation and validation to detect interactions [LL94].

Resolution - Focuses on run time detection of interactions [TM98]. Feature interac-
tions managers (FIM) are often used to resolve the interactions by prioritising the
activation of features.



No single approach can detect all interactions, so a combination of all three provides
the best possibility of detecting and resolving interactions during the software cycle of
a feature.

A more generalised definition of interactions is: The behaviour of a feature is sup-
pressed or modified by the existence of another feature. In our research, feature inter-
actions is defined as the behaviour of a feature preventing another from satisfying its
requirements. We use a detection approach to detect interactions using verification and
validation model checking.

3 Terrestial Trunked Radio (TETRA)

TETRA is the next generation of digital private mobile radio (PMR) network. It al-
lows the exchange of voice and data between mobile radios in a group and is currently
scheduled to replace existing analog networks used by organisations like the police.

To connect to the network, a mobile radio requests call setup to another in its group
via the Switching and Management Infrastructure (SwMI), which is made up of base
stations, switches and controllers. The called mobile accepts or rejects the request by
informing the SwMI which in turn informs the calling mobile of the response. Accep-
tance of a call setup request ensures both the calling and called mobiles are connected
to the group. To transmit voice or data in the group, a mobile has to request permission
from the SwMI, which grants or rejects the request. If granted, all mobiles in the group
are informed of the identity of the mobile and all receive the transmission.

3.1 Circuit Mode Control Entity

In this section, we provide an overview of the areas related to mobile communication.
The European Telecommunication Standard (ETS)[TR95] specifies the services and
protocol used by the Circuit Mode Control Entity (CMCE), which lies in layer three of
the International Organisation for Standardisation (ISO), Open Systems Interconnection
(OSI) seven layer reference model.

Each hand held or vehicle based mobile has one CMCE that is responsible for con-
necting it to a group call. Figure 1 shows the four sub-entities that make up the CMCE.
The dashed lines represent sub-entities and bi-directional channels that are not neces-
sary to our research, so we focus only on the Call Control (CC) and Protocol Control
(PC) sub-entities as they are essential to providing basic bearer services like call con-
nections and transmission of voice and data.

The Call Control sub-entity is responsible for initiating, maintaining and releasing
calls made by the mobile. It communicates via channelra to user applications2 (UA)
that can be anything from a press to talk button to a liquid crystal display on the mobile.
User applications are responsible for informing Call Control of activities such as call
setup request to another mobile. Channelrd connects Call Control with the Protocol
Control sub-entity, which is responsible for error correction and communicating with
the SwMI using channelri3.

2 User Applications are not defined by the ETS and therefore not shown in the figure.
3 Via the Mobile Link Entity, which is not shown in the figure and is not modelled.



Call Supplementary Short Data
ServiceControl (CC) Services

rg rh

rd re rf

Protocol Control (PC)

ra rb rc

ri

Fig. 1. Circuit Mode Control Entity

3.2 Information Extraction Process

In this section, we highlight the process we use to extract information from the ETS to
model the TETRA network. The aim is to derive the minimum amount of information
to successfully model the basic bearer services.

As mentioned in the previous section, only the Call Control and Protocol Control
sub-entities from the CMCE need to be included in the model as processes. Though the
Supplementary Services sub-entity is responsible for configuring and invoking features
on behalf of the mobile, there is little need to model it as all its responsibility can be
explicitly modelled in the SwMI process. The Short Data Services sub-entity has no
bearing on the features, therefore it is not modelled. As the SwMI and user applications
are outside the scope of the ETS, we model them as processes using cross referenced
information from other sources.

All communication in TETRA is done using protocol data units (PDUs). The struc-
ture of each PDU varies according to its primitive type, which identifies the PDU. For
example, the primitivetncc setuprequesthas up to twenty four parameters. We sim-
plify the structure of PDUs by requiring all primitives to have only four parameters as
shown in figure 2. The front of the PDU is occupied by its primitive type. The four
parameters identify the mobile (Tsi), its group (GTsi), the contact mobile (DestTsi) and
any additional information about the PDU (Msg). To cut down on the number of PDUs
in the model, we do not include call progress or query information. We also identify the
variables that need to be included in the model.

tncc_setup_request Tsi GTsi MsgDestTsi

Primitive type Primitive parameters

Fig. 2. Protocol Data Unit Structure

We decided to model three mobiles, as this number is sufficient for our analysis.
Figure 3 provides a diagrammatic view of the ten processes and bidirectional channels



that make up the TETRA model. The behaviour of each mobile is represented by the
ua, ccandpcprocesses.

ra rd

ra rd

ri

ri

ri ra

Mobile A

Mobile B

Mobile C

ua

cc

cc pc

pc cc ua

pcua

rdSwMI

Fig. 3. Processes in the TETRA Model

4 Why Promela And Xspin?

The Specification and Description Language (SDL) was introduced in the late 1970’s
by the International Telecommunication Union (ITU)4 and has found popular use in
the telecommunications industry. Its graphical syntax and comprehensive toolkit sup-
port has contributed to it being the language of choice when implementing TETRA
network. However, for our research it is unsuitable mainly because its semantics [SDL]
allows processes to discard messages at the head of their FIFO queues5, when they
cannot remove messages due to absent corresponding input symbols6. The effect of this
implicit consumption is to make it virtually impossible for an SDL system to deadlock
due to processes being unable to remove messages from their queues.

As Promela uses a C like text syntax, we found engineers familiar with program-
ming languages required little adjustment in understanding and using it. Promela’s use
of never claims to represent temporal formulae means that requirements could be speci-
fied and validated using the Xspin toolkit. Though we use Promela and Xspin, all results
need to be applicable to SDL. How this is done is outside the scope of this paper.

4.1 Linear Temporal Logic

Using linear temporal logic, it is possible to specify and reason about temporal proper-
ties at an abstract level. A sequence of infinite states is regarded as a computation. The
sequence represents a single path starting with an initial states0 and on execution of a
transition, progresses to a successor state shown as� : s0; s1; s2; � � �. Each state in the

4 Formally CCITT.
5 The SDL term is signal paths.
6 SDL does have a SAVE symbol to store messages that can be handled in later states. If this

operator is not used, the message is discarded.



sequence has an associated successor. First order temporal formulae are derived from
combining state formulae with boolean connectives and future and past temporal oper-
ators. As the past operators do not add any expressibility to the language of temporal
logic, we use only the future operators0 (always), 1 (eventually), U (until) andW
(unless). We do not cover the2 (next) operator as it is the only operator able to detect
stuttering (i.e. when a state is repeated in succession in a sequence). The definition of
future operators is based on the temporal formula holding at states in the computation.

Specifying Requirement Properties. Using the temporal operators, we can specify
properties of interest such as safety. For example, specifying the value of variablecount

is never less than zero0 (count � 0). Liveness requires the system to eventually
carry out a desirable behaviour such as system termination for a scheduled downtime
1 (terminate). A persistence property specifies that there are finitely many positions
where a property does not hold, but when the property occurs it holds indefinitely.
For example, on startup a system will reach a stable state and maintain the stability
1 0 (system stable). A response property allows the specification that an action has
a corresponding reaction, either at the same position or in the future. For example, every
request has a corresponding response0 (request ! 1 response). Other properties
that can be specified as temporal formulae are obligation and reactivity.

5 A Technique to Detect Feature Interactions

Building and verifying the TETRA model is not sufficient to detect feature interactions.
There is a need to apply the modelling language and toolkit in a manner that increases
the likelihood of detecting interactions. We devised and use a three stage technique that
is general enough to be used with any language and toolkit that allows validation of
requirements. Each stage consists of iterative steps. The first two stages apply to most
system development and do not involve the detection of feature interactions. However
the two are essential to the final detection stage, which uses requirements to detect
feature interactions. Verification and Validation is preferred over simulation because
they explore more computations and check for general properties such as deadlock and
livelock. The rest of this section, presents an overview of the stages involved in the
technique.

5.1 Stage One

This stage is concerned with constructing the requirements for the base model, imple-
menting, verifying and validating the base model against its requirements. The follow-
ing steps are applied:

1. Constructing the base model requirements (REQ):
REQ normally consists of a number of requirements, which are constructed using
information from the information extraction process. This ensures the requirements
are based on the intended behaviour of the model. For instance, there is no point in
having a requirement about performance when the model is implemented without
any performance operations.



2. Model the system (Stage1model): Language dependent.
3. Verify Stage1model for general properties:

On discovery of an error, resolve it and repeat from this step. When all errors are
resolved proceed to the next step.

4. ValidateStage1model againstREQ:
If Stage1 model does not satisfyREQ and providedREQ is correctly con-
structed, resolve the error and repeat from step three. IfREQ is incorrectly con-
structed, use the validation result to modifyREQ and repeat this step. The aim of
this step is to have the behaviour of the model satisfy all its requirements as shown
below, wherej= represents “satisfies”:
Stage1model j= REQ

We make no attempt to specify how the requirements are constructed because it is de-
pendent on the language and toolkit used. Nor are we concerned with how the model
is implemented. In step four, ifstage1 model does not satisfy the requirements, it is
necessary to confirm that the requirements are correctly constructed. It may be that the
behaviour of the model reveals an error in the requirements construction. When the
model satisfies all requirements, stage one has produced aStage1 model andREQ

that will be used in the next two stages.

5.2 Stage Two

The aim of this stage is to detect any interactions between theStage1 model and the
integration of a single feature. It is not advisable to modifyREQ as it would invalidate
the results from stage one. We repeat this stage for each feature, resulting in multiple
models containing only the integration of a feature with the base model. The integration
of the feature requires modification toStage1model to deriveStage2model.

1. Construct requirements for the feature (P1):
This step is similar to that done in stage one.

2. Model the feature (F1): Language dependent.
3. IntegrateF1 with Stage1model (Stage2model): Language dependent.
4. Verify Stage2model for general properties:

On discovery of an error, resolve the error and repeat this step.When all errors are
resolved, progress to the next step.

5. ValidateStage2model againstREQ andP1 requirements:
FirstREQ is validated. IfREQ is not satisfied, the integration of the feature (in-
cluding solutions to general property errors from the previous step) has modified
the behaviour of the model to anundesiredlevel, that it no longer satisfies its orig-
inal requirements. What is done at this point is left to the model implementors. One
solution is to review and modify resolutions to errors in step four and then to repeat
that step before progressing to this one. WhenREQ is satisfied, then validateP1.
If P1 is not satisfied and providing it is correctly constructed, resolve the error and
then repeat from step four (including validation ofREQ in this step to ensure it is
still satisfied). IfP1 is incorrectly specified, use the validation result to modifyP1
and repeat this step. The aim of this step is to ensureStage2 model satisfies the
conjunction of the original requirements and those of the feature’s:
Stage2model j= REQ ^ P1



5.3 Stage Three

This is the feature interactions detection stage. This stage allows integration of more
than one feature to an existingStage2 model. Which features are integrated depend
on issues such as what services are to be provided or analysis of combination of fea-
tures. The integration of features requires modification to aStage2 model to derive
Stage3model.

1. Integrating additional features to aStage2model (Stage3model):
Using one of theStage2 models as a starting point, integrate featuresF2 : : : Fn

to the model to deriveStage3 model. This must include all solutions to general
property errors fromStage2model for all the features integrated.

2. Verify Stage3model for general properties:
On detection of an error, resolve the error and then repeat this step.

3. ValidateStage3model againstREQ ^ P1 ^ P2 ^ Pn requirements:
This step detects any interactions between the integrated features. The features re-
quirement include only those integrated. IfStage3 model fails to satisfy any re-
quirements, feature interaction has occurred:
Stage3model j= REQ ^ P1 ^ : : : ^ Pn

Feature interactions is deemed to occur only if the behaviour of one feature prevents
another feature from satisfying its requirement. Any errors such as deadlock that oc-
cur during step two should be resolved using guidelines applicable to the model. When
all errors are resolved, it is the validation step that detects interactions. We know that
completion of stage two for each feature in isolation satisfies all its requirements and
those of the base model. Therefore, the validation step in stage three will detect any in-
teractions, when a requirement is not satisfied. Any solutions applied to resolve feature
interactions means returning to step two, where the cycle begins. Modifying any of the
requirements at this stage invalidates the previous stages.

6 Applying the Technique Using Promela and Xspin

In this section, we show how each stage of the technique is applied to the TETRA basic
bearer services and the CFU and BIC features. All requirements are constructed using
linear temporal logic. We completed the information extraction process before starting
this stage. It identified channelri , as the one to include in any requirements containing
messages. Consequently a mobile’s call setup request is valid only when itspc process
places a corresponding PDU in the channel.

6.1 Stage One - The Base Model

Constructing the base requirements.To construct a requirement, we apply the fol-
lowing steps:

1. An informal text description for each requirement is provided from the information
extraction process.



2. The text description is turned into a temporal formula consisting of propositions
and temporal operators.

3. The propositions are defined using messages and variables as parameters identified
by the information extraction process.

For example, the text wording for a requirement concerned with all mobiles in the group
call states that ,“All mobiles must join the group call and remain in the call.” This is
translated into the persistence temporal property1 0 (group setup). The proposition
group setup is defined as:

#define group_setup (IdleA == false && IdleB == false
&& IdleC == false)

For the property to be satisfied all the variables must have the value false, which indi-
cates they are in a call.

Modelling the TETRA basic bearer services. We first declare all global variables.
To use a string reference for each mobile, we use the#definekeyword. Each mobile is
defined as a two character string7, though in this paper we refer to the single character.
We also define the group identity using the same keyword. The status of a mobile and
other mobiles it can connect to, are declared as boolean variables and initialised with
values. The example lists only declarations for mobile A:

#define GROUP 0 /* Group ID */
#define AA 100 /* mobile A */
bool IdleA = true; /* mobile is idle */
bool ConnectAA_BB = false,

ConnectAA_CC = false;

We declare the structure of each PDU to have four parameters using thetypedefkey-
word. Primitive types are declared usingmtypekeyword. The channels used for com-
munications between the processes are declared using thechankeyword:

typedef pdu {byte Tsi, /* id for this mobile */
GTsi, /* Group id for the mobiles */
DestTsi, /* Tsi for contact mobile */
Msg }; /* additional pdu data */

mtype = {tncc_setup_request, ...};

chan AAra = [1] of {mtype, pdu}; /* A’s ra channel */
chan AArd = [1] of {mtype, pdu}; /* A’s rd channel */
chan AAri = [1] of {mtype, pdu}; /* A’s ri channel */

All channels are bounded to one. This allows earlier detection of deadlock8 during ver-
ification and validation. After declaring the global variables, we declare the processes
and define their behaviour as:

7 To allow features like Short Number Addressing (SNA) to reduce it to one character.
8 Caused by processes being unable to place a message in a full channel.



proctype SwMI()
{end_IDLE: atomic{...}} /* SwMI’s behaviour */

proctype pc(chan rd, /* rd channel */
ri) /* ri channel */

{...} /* pc’s behaviour */

proctype cc(chan ra, /* ra channel */
rd) /* rd channel */

{...} /* cc’s behaviour */

proctype ua(chan ra, /* ra channel */
byte UATsi; /* mobile’s identity */
bit AGTsi; /* mobile group id */
byte CanCall_1, /* mobile to call */
byte CanCall_2) /* mobile to call */

{...} /* ua’s behaviour */

As all processes in the base model do not terminate, we use theendkeyword to indicate
expected end states as shown for the SwMI. Since the SwMI coordinates communica-
tions between mobiles, we also use theatomickeyword to ensure it executes as many
statements as possible without interleaving with the other processes. The behaviour of
each mobile is constructed using the same pc, cc and ua processes. These processes are
parameterised to identify the channels associated with each process upon instantiation.
In addition, the ua process knows the identity of itself, its group and the other mobiles it
can nondeterministically make a call setup request to. The ua passes these information
to the other processes using the PDU parameters.

We useinit andrun keywords to instantiate all processes providing actual param-
eters for those that require them. As the SwMI process is the coordinating process, it
is instantiated before any others to ensure it is ready for communication. For the same
reason, the ua process for all mobiles is instantiated after its associated pc and cc pro-
cesses, to prevent it requesting setup before the others are instantiated. We list only the
SwMI and processes for mobile A, mobiles B and C follow the same format to create
the environment in figure 3:

init{ run SwMI();
run pc(AArd,AAri); /* channels rd & ri */
run cc(AAra,AArd); /* channels ra & rd */
run ua(AAra, AA, /* channel ra & mobile id */

GROUP, BB, CC); /* Group Id & can calls */
} /* end of init */

Verifying the TETRA model for general properties. We use Xspin version 3.2.4
with the full queue option to block new messages. Use of this option leads to deadlock
because of the way the processes are connected. For example, all pc processes fill their
ri channels with a call setup request. The ua, cc and pc processes for all mobiles then



block waiting for a response to their request. The SwMI non-deterministically removes
one of the requests from a mobile’s channelri and blocks because it is unable to place
a message on the called mobile’s channel to inform it of an incoming request. The
deadlock is reported by Xspin, which allows the use of the guided simulation to analyse
its cause. All errors reported by Xspin were of similar nature and were resolved. Two
error free models were implemented at the end of this step:

Tx model - On joining the group mobiles could request and be granted permission to
transmit. During hash compact verification, it uses thirty one megabytes of memory.

Non Tx model - Mobiles cannot request transmit permission on joining the group call.
They can non-deterministically reject or accept requests to join the group. During
exhaustive verification, it uses seven megabytes of memory.

Validating the TETRA model against its requirements. The Tx model failed the
persistence property requirement1 0 (group setup). Its guided simulation revealed
that transmission was (unintentionally!) assigned a higher priority than call setup. Thus,
when two of the three mobiles joined the group call9, their transmission activities pre-
vent the SwMI from connecting the third mobile to either of the two. The Non Tx model
on the other hand, satisfied all the requirements. Taking this into consideration and that
it used considerably less memory than the Tx model, we used it for the next two stages.
The alternative solution would be to correct the Tx model by assigning call setup a
higher priority than transmission.

6.2 Stage Two - The CFU Feature

In this section, we show the steps used to integrate a feature with the Non Tx model.
Though we use the Call Forwarding Unconditional feature as an example, the same
procedures are followed for the Barring of Incoming Calls feature. We completed an
information extraction process for each feature before starting this stage. It helped to
identify the variables and messages required by the feature.

Constructing requirements for the CFU feature. This step follows the same step
as for the base model requirements. We found that the feature’s requirements should
include the following amongst others:

– Activation and deactivation of the feature.
– All communications between the feature and mobiles.
– Global variables modified by the feature.

For example, the requirement, “The CFU informs the calling mobile of acceptance
of its request by the called mobile,” is translated into the response temporal property
0 (cfu divert accept! 1 cfu accept request ms) . Propositioncfu divert accept
defines the conditions that represents the called10 mobile informing the CFU of ac-
ceptance. Propositioncfu acceptrequestmsrepresents the CFU informing the calling
mobile of acceptance. They both are defined as:

9 One accepting the request of the other.
10 The mobile, the calling mobile was diverted to.



#define cfu_divert_accept
(BBri?[pc_swmi_u_connect,BB,0,AA,255]

&& CfuActive_c == true)
#define cfu_accept_request_ms

(AAri?[swmi_pc_d_connect,AA,0,BB,255]
&& ConnectAA_BB == true
&& ConnectAA_CC == false
&& CfuActive_c == false
&& IdleA == false && IdleB == false)

The response property11 uses the implication symbol, therefore the only time the prop-
erty is not satisfied isif propositioncfu divert acceptoccurs (i.e. the required parameter
values occur in the same state) andcfu acceptrequestmsdoes not occur in future states
. As we use Promela’s conjunction operator (&& ), a proposition is false if any one of its
arguments does not match its required value when the others do in the same state. With
this in mind, we intentionally use the minimum number of parameters in the definition
for propositioncfu divert accept, so it has more of a chance of occurring. We also max-
imise the number of arguments for propositioncfu acceptrequestms that allow it to
occur. As the CFU is the only feature in the model, this is straight forward. We include
only parameters that relate to the mobiles involved in the feature’s task.

Using the parameters in this way contributes greatly towards detecting feature inter-
actions in stage three. Minimising the arguments in the first proposition of the property
reduces the likelihood of another feature falsifying it. Maximising the number of argu-
ments in the second increase the possibility of it becoming false due to another feature
in stage three, modifying one of its arguments.

When messages are used in propositions definition, we refer to specific channels ,
PDU primitive types and PDU parameters that are required. Being able to specify the
PDU parameters in definitions allow us to ensure a response is a result of a previous
action. For example, we know that the messages included in the above propositions
are related because the first parameter (which identifies the mobile) and the third (its
contact) match when reversed.

Modelling the CFU feature. All features are designed to terminate on completion of
their task. It is necessary to introduce additional global variables12 that specify the sta-
tus of the feature, its subscriber, the calling and the divert to mobile. To allow flexibility,
we use parameters in the definition of all features:

proctype cfu(byte SubscriberMs, /* mobile id */
CallingMs, /* calling mobile */
DivertMs, /* mobile to divert to */
GroupId, /* group id */
Message) /* additional pdu data */

{IDLE: atomic{...}} /* cfu’s behaviour */

11 As the TETRA network is distributed, the response property is used for most of the require-
ments in the first two stages.

12 Identified from the information extraction process for the feature.



We consider the CFU to be part of the SwMI and for this reason, it also uses theatomic
keyword. Using the CallingMS and DivertMs parameters, the feature is able to dynam-
ically decide which channelri to use for communication with the mobiles.

Integrating the CFU with the base model. To integrate the CFU into the base model
from stage one, we modify the SwMI process by using thedo: : :od construct to instan-
tiate the feature:

do /* activate features */
:: (CfuActive_c == false && /* not active for mobile */

CfuAlreadyRan_c == false)-> /* not ran for C */
CfuActive_c = true ; /* to be activated */
CfuAlreadyRan_c = true ; /* cfu will be ran */
FeatureCounter_c++ ; /* feature activated */
run cfu(CalledTsi, /* subscriber mobile */

CallingTsi, /* Calling mobile */
BB, /* mobile to divert to */
GTsi, /* group id */
Msg); /* additional message */

:: /* termination of feature activation */
(FeatureCounter_c == 1) -> /* total num. features */
CfuAlreadyRan_c = false ; /* cfu can run again */
FeatureCounter_c = 0 ; /* all features can run */
goto end_IDLE ; /* Swmi handle other calls */

od; /* activate features */

To run the CFU, the SwMI checks that the feature is not currently active and that it has
not already run. If these conditions are met, the SwMI sets the status of the feature as
active and marks the feature as already ran. The feature counter is then incremented,
to show a feature has been activated. The CFU is then instantiated with parameters. To
break out of the construct the SwMI uses the termination sequence. The feature counter
must equal the total number of features activated for the subscriber. The feature is then
marked as available to be ran. The feature counter is reset to zero and the SwMI is
able to handle other calls. The CFU is responsible for reseting its status, to prevent the
SwMI from instantiating two copies of the same feature. The SwMI blocks until the
active CFU terminates before instantiating another copy of the feature. Providing actual
parameters for the CFU, models the behaviour of the supplementary services sub-entity
discussed in section 3.2.

Verifying the integrated model for general properties. Since both the CFU feature
and the SwMI access channelri to communicate with the mobiles, violation of an assert
statement during verification revealed a race condition occurs with the SwMI consum-
ing messages meant for the CFU and vice versa. We resolved this error by replacing
the assert statement with additional code so that both SwMI and CFU, on retrieving a
message, check whether the message is intended for itself. If this is not the case, the
process puts the message back in the channel and blocks until it is removed by another.



Using the hash compact search, verification of the model used fourteen megabytes of
memory.

Validating the base model and CFU requirements.This step revealed that propo-
sitions using messages parameters are influenced by removal of messages from chan-
nels. For example, the response property for the CFU in its original form was not sat-
isfied. This is because thecfu acceptrequestms proposition relied on the argument
CfuActivec equalling true (meaning the CFU feature is active). Analysis of its guided
simulation revealed that when the message is placed in the channel by the CFU, the
proposition is satisfied. However, by the time the calling mobile removes the message,
the CFU is no longer active causing the requirement not to be satisfied. This is a case,
where the acceptable behaviour of the model resulted in the requirement being modified
to the form shown on page 11. Simply changingCfuActivec to equal false resolved the
error.

All base model requirements were satisfied provided they refer to mobiles that do
not subscribe to the CFU feature13. This confirms that the requirements from stage one
need to be included in the second and third stages, in order to ensure mobiles that do
not subscribe to features are unaffected by feature integration. It is sufficient to validate
requirements one at a time, as failure to satisfy an individual requirement will not satisfy
their conjunction.

6.3 Stage Three - Feature Interactions Detection

Integrating the BIC with the CFU and base model. To answer the uncertainty raised
in section 2, we integrated the BIC to the CFU’sStage2 model. As both the CFU
and BIC are activated by the same message in the SwMI, we added the code required
for the SwMI to instantiate the BIC in the samedo: : :od construct used for the CFU.
During instantiation, the BIC is supplied with actual parameters. In the listing below,
modifications to the termination sequence is required to cater for integration of the BIC:

do
:: /* instantiate CFU */
:: /* instantiate BIC */
:: /* termination of feature activation */

(FeatureCounter_c == 2) -> /* total num. features */
CfuAlreadyRan_c = false ; /* cfu can run again */
BicAlreadyRan_c = false ; /* bic can run again */
FeatureCounter_c = 0 ; /* all features can run */
goto end_IDLE ; /* SwMI handles other calls */

od ; /* activate features */

All solutions required to resolve deadlock errors in stage two for the BIC were also
included in the SwMI and pc processes. An interesting observation was that the BIC
solutions were found to be a subset of the solutions required for the CFU. This is be-
cause when the features have carried out their specific function (e.g. the BIC screens
the incoming request), they behave identically.
13 This is because the CFU takes over parts of the SwMI’s operations.



Verifying the model for general properties. The first deadlock error revealed that the
CFU does forward a mobile that is on the subscriber’s barred list to another, whilst the
BIC bars the same mobile from contacting the subscriber. As far as we are concerned,
both features are behaving as expected and this is not a case of feature interactions, so
we continue with resolving all verification errors.

The final hash compact verification required two hundred and sixty nine megabytes
of memory. Xspin also raised an “out of memory” message14, indicating the state space
exploration was not complete. Though the number of errors found was zero, we cannot
conclude that the model is error free. However, we can conclude no errors were found
in the state space explored. With this in mind, we progress to the next step.

Validating the base model, CFU and BIC requirement.Though the state space ex-
ploration was not completed in the previous step, we can still continue with the vali-
dation step. The aim is to see if the behaviour of the model violates any requirement,
before memory constraints terminate the exploration.

We found two cases of feature interaction that did not exist in stage two for either
feature in isolation.

– Though the BIC satisfied its requirements, its behaviour prevented the CFU from
satisfying the requirement discussed on page 11. Feature interactions occurs be-
cause the BIC sets the status of the barred mobile as inactive, when it is rejected.
However, the CFU continues to connect the barred mobile with the mobile it is
diverted to. The CFU’s requirement expects the status of the barred mobile to be
active when connection is achieved. The behaviour of the BIC, causes the argument
IdleA == false in propositioncfu acceptrequestmsto be false. As the proposition
cfu divert accepthas occurred, the requirement is not satisfied.

– The behaviour of the BIC in setting the status of the barred mobile as inactive also
prevented the original requirement from stage one discussed on page 9 from being
satisfied.

Discovering the interactions used only six megabytes of memory. This is because vio-
lation of the requirement was detected early during validation, therefore requiring less
memory to store the generated state space.

7 Conclusion

We introduced a three stage technique that detects feature interactions. Each stage con-
sists of iterative steps geared towards achieving specific objectives. The first stage pro-
duces a base model that satisfies its requirements. Stage two builds on the base model
by integrating a single feature. Isolating the feature from others in this stage, allows
correct construction and validation of its requirements. Successful completion of stage
two results in a modified model that satisfies its original requirements and those of the

14 Of all feature integrations the CFU and BIC prove to be the most complex and resource de-
manding to verify.



integrated feature. This stage is performed for all features. The final stage allows multi-
ple features to be integrated to a model from stage two. Feature interactions is detected
if the modified model does not satisfy any of its original requirements and those of the
features integrated.

We demonstrated the effectiveness of the technique using Promela to model the
TETRA network and two features. The Xspin toolkit was used to verify and validate
the model in every stage. The most important benefit in using the Promela and Xspin
combination is the ability to validate models against requirements using linear temporal
logic. Since validation forms the heart of our technique, using Promela and Xspin in this
manner allows proof of concept.

Acknowledgement

The authors would like to thank Neil Evans, Huma Lodhi and Helen Treharne for their
comments on this paper. We also thank Motorola’s Paul Baker and Clive Jervis for
discussions about the TETRA network.

References

[Eura] European Telecommunications Standards Institute.Radio Equipment and Systems
(RES); Trans-European Trunked Radio (TETRA); Voice plus Data (V+D); Part 10: Sup-
plementary Services Stage 1; Part 10-04: Call Diversion. ETS 300 392-10-04.

[Eurb] European Telecommunications Standards Institute.Radio Equipment and Systems
(RES); Trans-European Trunked Radio (TETRA); Voice plus Data (V+D); Part 11: Sup-
plementary Services (SS) Stage 2; Part 11-19: Barring of Incoming Calls (BIC). ETS
300 392-11-19.

[Hol90] Gerard J. Holzmann.Design and validation of computer protocols. Prentice Hall, 1990.
ISBN 0-13-539925-4.

[JP98] M. Jackson and P.Zave. Distributed Feature Composition: A Virtual Architecture
for Telecommunications Services. IEEE Transactions on Software Engineering,
24(10):831–847, October 1998.

[KK98] D.O. Keck and P.J. Kuehn. The Feature and Service Interaction Problem in Telecommu-
nications Systems:A Survey.IEEE Transactions on Software Engineering, 24(10):779–
796, October 1998.

[LL94] F. Joe Lin and Yow-Jian Lin. A Building Block Approach to Detecting and Resolving
Feature Interaction. In W. Bouma and H. Velthuijsen, editors,Feature Interactions in
Telecommunication Systems, chapter 6, pages 86–119. IOS Press, 1994.

[MP91] Zohar Manna and Amir Pnueli.The Temporal logic of Reactive and Concurrent Systems
Specification. Springer-Verlag, 1991. ISBN 0-387-97664-7 (v. 1).

[SDL] Annex F to Recommendation Z.100, (Formal Definition of SDL 92), Dynamic Semantics.
[TM98] S. Tsang and E.H. Magill. Learning To Detect and Avoid Run-Time Feature Interactions

in Intelligent Networks.IEEE Transactions on Software Engineering, 24(10):818–830,
October 1998.

[TR95] ETSI TC-RES.Radio Equipement and Systems (RES); Trans-European Trunked Radio
(TETRA); Voice plus Data (V+D) Part 2: Air Interface (AI). European Telecommunica-
tions Standard, 1995. ETS 300 392-2.


