
Using Runtime Analysis to

Guide Model Checking of Java Programs

Klaus Havelund

QSS/Recom

NASA Ames Research Center

Mo�ett Field, CA, USA

havelund@ptolemy.arc.nasa.gov

http://ase.arc.nasa.gov/havelund

Abstract. This paper describes how two runtime analysis algorithms,

an existing data race detection algorithm and a new deadlock detection

algorithm, have been implemented to analyze Java programs. Runtime

analysis is based on the idea of executing the program once, and ob-

serving the generated run to extract various kinds of information. This

information can then be used to predict whether other di�erent runs may

violate some properties of interest, in addition of course to demonstrate

whether the generated run itself violates such properties. These runtime

analyses can be performed stand-alone to generate a set of warnings. It

is furthermore demonstrated how these warnings can be used to guide

a model checker, thereby reducing the search space. The described tech-

niques have been implemented in the home grown Java model checker

called Java PathFinder.

Keywords Concurrent programs, runtime analysis, race conditions, dead-

locks, program veri�cation, guided model checking, Java.

1 Introduction

Model checking of programs has received an increased attention from the for-
mal methods community within the last couple of years. Several systems have
emerged that can model check source code, such as Java, C and C++ directly
(typically subsets of these languages) [17, 9, 4, 20, 30, 25]. The majority of these
systems can be classi�ed as translators, which translate from the programming
language source code to the modeling language of the model checker. The Java
PathFinder 1 (JPF1) [17], developed at NASA Ames Research Center, was such
an early attempt to bridge the gap between Java [12] and the PROMELA lan-
guage of SPIN [21]. A second generation of Java PathFinder (JPF2) [30] has
recently been developed at NASA Ames, which diverges from the translation
approach, and model checks bytecode directly. This system contains a home
grown Java Virtual Machine (JVM) speci�cally designed to support memory ef-
�cient storage of states for the purpose of model checking. This system resembles
the Rivet machine described in [3] in the sense that Rivet also provides its own
new JVM.

The major obstacle for model checking to succeed is of course the manage-
ment of large state spaces. For this purpose abstraction techniques have been
studied heavily in the past 5 years [18, 2, 13, 8, 1]. More recently, special focus
has been put on abstraction environments for Java and C [5, 6, 31, 20, 14, 25].
Alternatives to state recording model checking have also been tried, such as
VeriSoft [11], which performs stateless model checking of C++ programs, and
ESC [10], which uses a combination of static analysis and theorem proving to
analyze Modula3 programs. Of course static program analysis techniques [7] is
an entire separate promising discipline, although it yet remains to be seen how
well they can handle concurrency. An alternative to the above mentioned tech-
niques is runtime analysis, which is based on the idea of concluding properties
of a program from a single run of the program. Hence, executing the program
once, and observing the run to extract information, which is then used to predict
whether other di�erent runs may violate some properties of interest (in addition
of course to demonstrate whether the generated run violates such properties).
The most known example of a runtime analysis algorithm is perhaps the data
race detection algorithm Eraser [26], developed by S. Savage, M. Burrows, G.
Nelson, and P. Sobalvarro, which has been implemented in the Visual Threads
tool from Compaq [27]. A data race is the simultaneous access to an unprotected
variable by several threads. An important characteristic of this algorithm is that
a run itself does not have to contain a data race in order for data races in other
runs to be detected. This kind of algorithm will not guarantee that errors are
found since it works on an arbitrary run. It may also yield false positives. What
is attractive, however, is that the algorithm scales very well since only one run
needs to be examined. Also, in practice Eraser often seems to catch the problems
it is designed to catch independently of the run chosen. That is, the randomness
in the choice of run does not seem to imply a similar randomness in the analysis
results.

The work presented in this paper describes an extension to JPF2 to perform
runtime analysis on multi-threaded Java programs in simulation mode, either
stand-alone, or as a pre-run to a subsequent model checking, which is guided by
the warnings generated during the runtime analysis. We implement the generic
Eraser algorithm to work for Java, and furthermore develop and implement a
new runtime analysis algorithm, called GoodLock, that can detect deadlocks. We
furthermore implement a third runtime dependency analysis used to do dynamic
slicing of the program before the model checker is activated on the set of runtime
analysis warnings. Section 2 describes the Eraser algorithm from [26], and how
it is implemented in JPF2 to work on Java programs. Section 3 describes the
deadlock detection algorithm and its implementation. Section 4 describes how
these analyses, in addition to being run stand alone, can be performed in a pre-
run to yield warnings, that are then used to guide a model checker. This section
includes a presentation of the runtime dependency analysis algorithm used to
reduce the state space to be explored by the model checker. Finally, Section 6
contains conclusions and a description of future work.

2 Data Race Detection

This section describes the Eraser algorithm as presented in [26], and how it has
been implemented in JPF2 to work on Java programs. A data race occurs when
two concurrent threads access a shared variable and when at least one access is
a write, and the threads use no explicit mechanism to prevent the accesses from
being simultaneous. The Eraser algorithm detects data races in a program by
studying a single run of the program, and from this trying to conclude whether
any runs with data races are possible. We have implemented the generic Eraser
algorithm described in [26] to work for Java's synchronization constructs. Sec-
tion 2.1 illustrates with an example how JPF2 is run in Eraser mode. Section
2.2 describes the generic Eraser algorithm, while Section 2.3 describes our im-
plementation of it for Java.

2.1 Example

The Java program in Figure 1 illustrates a potential data race problem.

1. class Value{

2. private int x = 1;

3.

4. public synchronized void add(Value v){x = x + v.get();}

5.

6. public int get(){return x;}

7. }

8.

9. class Task extends Thread{

10. Value v1; Value v2;

11.

12. public Task(Value v1,Value v2){

13. this.v1 = v1; this.v2 = v2;

14. this.start();

15. }

16.

17. public void run(){v1.add(v2);}

18. }

19.

20. class Main{

21. public static void main(String[] args){

22. Value v1 = new Value(); Value v2 = new Value();

23. new Task(v1,v2); new Task(v2,v1);

24. }

25. }

Fig. 1. Java program with a data race condition.

Three classes are de�ned: The Value class contains an integer variable that
is accessed through two methods. The add method takes another Value object
as parameter and adds the two, following a typical object oriented programming
style. The method is synchronized, which means that when called by a thread,
no other thread can call synchronized methods in the same object. The Task

class inherits from the system de�ned Thread class, and contains a constructor
(lines 12-15) that is called when objects are created, and a run method that is

called when these objects are started with the start method. Finally, the main
method in the Main class starts the program. When running JPF2 in simulation
mode with the Eraser option switched on, a data race condition is found, and
reported as illustrated in Figure 2.

Race condition!

Variable x in class Value

is accessed unprotected.

From Task thread:

read access

Value.get line 6

Value.add line 4

Task.run line 17

From Task thread:

write access

Value.add line 4

Task.run line 17

=============================

Fig. 2. Output generated by JPF2 in Eraser simulation mode.

The report tells that the variable x in class Value is accessed unprotected, and
that this happens from the two Task threads, from lines 4 and 6, respectively, also
showing the call chains from the top-level run method. The problem detected is
that one Task thread can call the add method on an object, say v1, which in turn
calls the unsynchronized get method in the other object v2. The other thread
can simultaneously make the dual operation, hence, call the add method on
v2. Note that the fact that the add method is synchronized does not prevent its
simultaneous application on two di�erent Value objects by two di�erent threads.

2.2 Algorithm

The basic algorithm works as follows. For each variable x, a set of locks set(x) is
maintained. At a given point in the execution, a lock l is in set(x) if each thread
that has accessed x held l at the time of access. As an example, if one thread
has the lock l1 when accessing a variable x, and another thread has lock l2, then
set(x) will be empty after those two accesses, since there are no locks that both
threads have when they access the variable. If the set in this way becomes empty,
it means that there does not exist a lock that protects it, and a warning can be
issued, signaling a potential for a data race.

The set of locks protecting a variable can be calculated as follows. For each
thread t is maintained the set, set(t), of locks that the thread holds at any time.
When a thread for example calls a synchronized method on an object, then the
thread will lock this object, and the set will be updated. Likewise, when the
thread leaves the method, the object will be removed from the lock set, unless

the thread has locked the object in some other way. When the thread t accesses a
variable x (except for the �rst time), the following calculation is then performed:

set(x) := set(x) \ set(t);
if set(x) = fg then issue warning

The lock set associated to the variable is re�ned by taking the intersection
with the set of locks held by the accessing thread. The initial set, set(x), of locks
of the variable x is in [26] described to be the set of all locks in the program.
In a Java program objects (and thereby locks) are generated dynamically, hence
the set of all locks cannot be pre-calculated. Instead, upon the �rst access of the
variable, set(x) is assigned the set of locks held by the accessing thread, hence
set(t).

The simple algorithm described above yields too many warnings as explained
in [26]. First of all, shared variables are often initialized without the initializing
thread holding any locks. In Java for example, a thread can create an object
by the statement new C(), whereby the C() constructor will initialize the vari-
ables of the object, probably without any locks. The above algorithm will yield
a warning in this case, although this situation is safe. Another situation where
the above algorithm yields unnecessary warnings is if a thread creates an ob-
ject, where after several other threads read the object's variables (but no-one is
writing after the initialization).

VIRGIN

EXCLUSIVE

SHARED

SHARED-MODIFIED

Write
by new thread

Write

Read

Read
by new thread

Write

Read/Write
Read/Write

by first thread

✒

✓

✓
✓

✑

✑

✒

✒

✑ =

✓ =

✒ =

set(x) := set(t)

set(x) := intersect(set(x),set(t))

if isEmpty(set(x)) then warning

Fig. 3. The Eraser algorithm associates a state machine with each variable x. The

state machine describes the Eraser analysis performed upon access by any thread t.

The pen heads signify that lock set re�nement is turned on. The \ok" sign signi�es

that warnings are issued if the lock set becomes empty.

To avoid warnings in these two cases, [26] suggests to extend the algorithm by
associating a state machine to each variable in addition to the lock set. Figure 3

illustrates this state machine. The variable starts in the VIRGIN state. Upon the
�rst write access to the variable, the EXCLUSIVE state is entered. The lock set
of the variable is not re�ned at this point. This allows for initialization without
locks. Upon a read access by another thread, the SHARED state is entered, now
with the lock re�nement switched on, but without yielding warnings in case the
lock set goes empty. This allows for multiple readers (and not writers) after the
initialization phase. Finally, if a new thread writes to the variable, the SHARED-
MODIFIED state is entered, and now lock re�nements are followed by warnings
if the lock set becomes empty.

2.3 Implementation

The Eraser algorithm has been implemented by modifying the home grown Java
Virtual machine to perform this analysis when the eraser option is switched
on. Two new Java classes are de�ned: LockSet, implementing the notion of a set
of locks, and LockMachine, implementing the state machine and lock set, that
is associated with each variable.

Lock Sets Associated with Threads Each thread is associated with a LockSet
object, which is updated whenever a lock on an object is taken or released. The
interface of this class is:

interface iLockSet{

void addLock(int objref);

void deleteLock(int objref);

void intersect(iLockSet locks);

boolean contains(int objref);

boolean isEmpty();

}

This happens for example when a synchronized statement such as:

synchronized(lock){

...

}

is executed. Here lock will refer to an object, the object reference of which will
then be added to the lock set of the thread that executes this statement. Upon
exit from the statement, the lock is removed from the thread's lock set, if the
lock has not been taken by an enclosing synchronized statement. This can occur
for example in a statement like1:

synchronized(lock){

synchronized(lock){

...

};

(*)

}

1
This statement illustrates a principle and does not represent a programming practice.

In this case, leaving the inner synchronized statement should not cause the lock
to be removed from the thread's lock set since the outer statement still causes
the lock to be held at point (*). The JPF2 JVM already maintains a counter
that tracks the nesting, and this counter is then used to update the lock sets
correctly. Note that conceptually a synchronized method such as:

public synchronized void doSomething(){

...

}

can be regarded as short for:

public void doSomething(){

synchronized(this){

...

}

}

State Machines Associated with Variables The LockMachine class has the
following interface:

interface iLockMachine{

void checkRead(ThreadInfo thread);

void checkWrite(ThreadInfo thread);

}

An object of the corresponding class is associated to each variable, and its
methods are called whenever a variable �eld is read from or written to. Variables
include instance variables as well as static variables of a class, but not variables
local to methods since these cannot be shared between threads.

Instrumenting the Bytecodes A Java program is translated into bytecodes
by the compiler. The bytecodes manipulate a stack of method frames, each
with an operand stack. Objects are stored in a heap. The add method of the
Value class in Figure 1, for example, is by the Java compiler translated into the
following bytecodes:

Method synchronized void add(Value)

0 aload_0

1 aload_0

2 getfield #7 <Field int x>

5 aload_1

6 invokevirtual #6 <Method int get()>

9 iadd

10 putfield #7 <Field int x>

13 return

The reference (this) of the object on which the addmethod is called, is loaded
twice on the stack (0 and 1), where after the x �eld of this object is extracted
by the getfield bytecode, and put on the stack, replacing the topmost this

reference. The object reference of the argument v is then loaded on the stack
(5), and the get method is called by the invokevirtual bytecode, the result
being stored on the stack. Finally the results are added and restored in the x

�eld of this object.

The JPF2 JVM accesses the bytecodes via the JavaClass package [23], which
for each bytecode delivers a Java object of a class speci�c for that bytecode
(recall that JPF2 itself is written in Java). The JPF2 JVM extends this class
with an execute method, which is called by the veri�cation engine, and which
represents the semantics of the bytecode. The runtime analysis is obtained by
further annotating the execute method. For example, a getfield bytecode is
delivered to the JPF2 JVM as an object of the following class, containing an
execute method, which makes a conditional call (if the Eraser option is set) of
the checkRead method of the lock machine of the variable being read.

public class GETFIELD extends AbstractInstruction {

public InstructionHandle execute(SystemState s) {

...

if (Eraser.on){

da.getLockMachine(objref,fieldName).checkRead(th);

}

...

}

}

A similar annotation is made for the PUTFIELD bytecode. Similar annotations
are also made for static variable accesses such as the bytecodes GETSTATIC and
PUTSTATIC, and all array accessing bytecodes such as for example IALOAD and
IASTORE. The bytecodes MONITORENTER and MONITOREXIT, generated from ex-
plicit synchronized statements, are annotated with updates of the lock sets of
the accessing threads to record which locks are owned by the threads at any
time; just as are the bytecodes INVOKEVIRTUAL and INVOKESTATIC for calling
synchronized methods. The INVOKEVIRTUAL bytecode is also annotated to deal
with the built-in wait method, which causes the calling thread to release the
lock on the object the method is called on. Annotations are furthermore made
to bytecodes like RETURN for returning from synchronized methods, and ATRHOW

that may cause exceptions to be thrown within synchronized contexts.

3 Deadlock Detection

In this section we present a new runtime analysis algorithm, called GoodLock, for
detecting deadlocks. A classical deadlock situation can occur where two threads
share two locks, and they take the locks in di�erent order. This is illustrated in
Figure 4, where thread 1 takes the lock Ll �rst, while thread 2 takes the lock
L2 �rst, where after each of the two threads is now prevented from getting the
remaining lock because the other thread has it.

3.1 Example

To demonstrate this situation in Java, suppose we want to correct the program
in Figure 1, eliminating the data race condition problem by making the get

method synchronized, as shown in Figure 5, line 6 (we just add the synchronized
keyword to the method signature).

L2

L1

Thread 1 Thread 2

Fig. 4. Classical deadlock where task 1 takes lock Ll �rst and task 2 takes lock L2 �rst.

1. class Value{

2. private int x = 1;

3.

4. public synchronized void add(Value v){x = x + v.get();}

5.

6. public synchronized int get(){return x;}

7. }

Fig. 5. Avoiding the data race condition by making the get method synchronized.

Now the x variable can no longer be accessed simultaneously from two threads,
and the Eraser module will no longer give a warning. When running JPF2 in
simulation mode with the GoodLock option switched on, however, a lock order
problem not present before is now found, and reported as illustrated in Figure
6.

Lock order conflict!

Locks on Value#1 and Value#O

are taken in opposite order.

Lock on Value#1 is taken last

by Task thread:

Value.add line 4

Task.run line 17

Lock on Value#O is taken last

by Task thread:

Value.add line 4

Task.run line 17

==============================

Fig. 6. Output generated by JPF2 in GoodLock simulation mode.

The report explains that the two object instances of the Value class, identi�ed
by the internal object numbers #0 and #1, are taken in a di�erent order by the
two Task threads, and it indicates the line numbers where the threads may
deadlock, hence where the access to the second lock may fail. That is, line 4
contains the call of the get method from the add method. The problem arises
due to the fact that the get method has become synchronized. One task may
now call the add operation on a Value object, say v1, which in turn calls the
get method on the other object v2; hence locking v1 and then v2 in that order.

Since the other task will do the reverse, we have a situation as illustrated in
Figure 4.

An algorithm that detects such lock cycles must in addition take into account
that a third lock may protect against a deadlock like the one above, if this lock
is taken as the �rst thing by both threads, before any of the other two locks are
taken. In this situation no warnings should be emitted. Such a protecting third
lock is called a gate lock. The algorithm below does not warn about a lock order
problem in case a gate lock prevents the deadlock from ever happening.

3.2 Algorithm

The algorithm for detecting this situation is based on the idea of recording the
locking pattern for each thread during runtime as a lock tree, and then when the
program terminates to compare the trees for each pair of threads as explained
below. If the program does not terminate by itself, the user can terminate the
execution by a single stroke on the keyboard, when he or she believes enough in-
formation has been recorded, which can be inferred by information being printed
out. The lock tree that is recorded for a thread represents the nested pattern
in which locks are taken by the thread. As an arti�cial example, consider the
code fragments of two threads in Figure 7. Each thread executes an in�nite loop,
where in each iteration four locks, L1, L2, L3 and L4, are taken and released in
a certain pattern. For example, the �rst thread takes L1; then L3; then L2; then
it releases L2; then takes L4; then releases L4; then releases L3; then releases
L1; then takes L4; etc.

Thread 1: while(true){ Thread 2: while(true){

synchronized(L1){ synchronized(Ll){

synchronized(L3){ synchronizd(L2){

synchronized(L2){}; synchronized(L3){}

synchronized(L4){} }

} };

};

synchronized(L4){ synchronized(L4){

synchronized(L2){ synchronized(L3){

synchronized(L3){} synchronized(L2){}

} }

} }

} }

Fig. 7. Synchronization behavior of two threads.

This pattern can be observed, and recorded in a �nite tree of locks for each
thread, as shown in Figure 8, by just running the program for a large enough
period to allow both loops to be iterated at least once. As can be seen from
the tree, a deadlock is potential because thread 1 in its left branch locks L3
(node identi�ed with 2) and then L4 (4), while thread 2 in its right branch takes
these locks in the opposite order (11, 12). There are furthermore two additional
ordering problems between L2 and L3, one in the two left branches (2, 3 and
9, 10), and one in the two right branches (6, 7 and 12, 13). However, neither of

these pose a deadlock problem since they are protected by the gate locks L1 (1,
8) respectively L4 (5, 11). Hence, one warning should be issued, corresponding to
the fact that this program would deadlock if thread 1 takes lock L3 (left branch
of thread 1 in Figure 8) and thread 2 takes lock L4.

L3

L1

L3

L2 L4

L4

L2

L1

L2

L3

L4

L3

L2

Thread 1 Thread 2

1

2

3 4

5

6

7

8

9

10

11

12

13

Fig. 8. Lock trees corresponding to threads in Figure 7.

The tree for a thread is built as follows. Each time an object o is locked,
either by calling a synchronized method m on it, as in o:m(: : :), or by executing
a statement of the form: synchronized(o)f: : :g, the `lock' operation in Figure
9 is called. Likewise, when a lock is released by the return from a synchronized
method, or control leaves a synchronized statement, the `unlock' operation is
called. The tree has at any time a current node, where the path from the root
(identifying the thread) to that node represents the lock nesting at this point
in the execution: the locks taken, and the order in which they were taken. The
lock operation creates a new child of the current node if the new lock has not
previously been taken with that lock nesting. The unlock operation just backs
up the tree if the lock really is released, and not owned by the thread in some
other way. For the program in Figure 7, the trees will stabilize after one iteration
of each loop, and will not get updated further. A print statement can inform the
user whenever a new lock pattern is recognized and thereby a tree is updated,
thereby making it easier for the user to decide when to terminate the program
in case it is in�nitely looping (if nothing is printed out after a while it is unlikely

that new updates to the tree will occur).

lock(Thread thread,Lock lock)f
if thread does not already own lockf

if lock is a son of currentf
current = that son

gelsef
add lock as a new son of current;
current = new son;
print(\new pattern identi�ed");ggg

unlock(Thread thread,Lock lock)f
if thread does not own lock in another wayf

current = parent of current node;gg

Fig. 9. Operations `lock' and `unlock' used for creating a lock tree.

When the program terminates, the analysis of the lock trees is initiated by
a call of the `analyze' operation in Figure 10. This operation compares the trees
for each pair of threads2. For each pair (t1, t2) of trees, such as those in Figure
8, the operation `analyzeThis' is called recursively on all the nodes n1 in t1; and
for every node n2 in t2 with the same lock as n1, it is checked that no lock below
n1 in t1 is above n2 in t2. In order to avoid issuing warnings when a gate lock

prevents a deadlock, nodes in t2 are marked after being examined, and nodes
below marked nodes are not considered until the marks are removed when the
analyzeThis operation backtracks from the corresponding node in t1. This will
prevent warnings from being issued about locks L2 and L3 in Figure 8, since
the nodes 8 and 11 of thread 2 will get marked, when the trees below nodes 1
respectively 5 of thread 1 get examined. This reects that nodes L1 and L4 are
such gate locks preventing deadlocks due to lock order conicts lower down the
trees.

analyze()f
for each pair (t1,t2) of thread treesf

for each immediate child node n1 of t1's topnodef
analyzeThis(n1,t2);ggg

analyzeThis(LockNode n,LockTree t)f
Set N = fnt 2 t j nt:lock == n:lock ^ nt is not below a markg;
for each nt in Nf

check(n,nt);

g;
mark nodes in N ;

for each child n
child of nf

analyzeThis(nchild,t);

g;
unmark nodes in N;g

check(n1,n2)f

for each child node n
child

1
of n1f

if n
child

1
.lock is above n2f

conict()

gelsef

check(nchild
1

,n2)ggg

Fig. 10. Operations `analyze', `analyzeThis', and `check' used for analyzing lock trees.

The program in Figure 1 with the change indicated in Figure 5 has a potential
for deadlock, which is detected by the GoodLock algorithm since each of the
lock trees describes two locks on Value objects taken one after the other, but in
di�erent order in the two trees. Note, however, that the detection of a deadlock
potential is not a proof of the existence of a deadlock. The program may prevent
the deadlock in some other way. It is just a warning, which may focus our
attention towards a potential problem. Note also, that the algorithm as described
only detects deadlock potentials between pairs of threads. That is, although
the analyzed program can have a very large number of threads, which is the

2
The operation is symmetric such that only one ordering of a pair needs to be exam-

ined.

major strength of the algorithm, deadlocks will only be found if they involve
two threads. A generalization is needed to identify deadlocks between more than
two threads. The generalization must identify a subset of threads (trees) which
together create a conict. Consider for example three threads, each taking 2 out
of 3 locks L1, L2 and L3 as follows: <L1,L2>, <L2,L3> and <L3,L1>. One can
easily detect this deadlock by observing that as their �rst steps they together
take all the locks, which prevent them from taking their second step each.

3.3 Implementation

The major new Java class de�ned is LockTree, which describes the lock tree ob-
jects that are associated with threads, and that are updated during the runtime
analysis, and �nally analyzed after program termination. Its interface is:

interface iLockTree{

void lock(Lock lock);

void unlock();

void analyze(iLockTree otherTree);

}

The following bytecodes will activate calls of the lock and unlock opera-
tions in these tree objects for the relevant threads: MONITORENTER and
MONITOREXIT for entering and exiting monitors, INVOKEVIRTUAL and
INVOKESTATIC for calling synchronized methods or the built-in wait method
of the Java threading library, bytecodes like RETURN for returning from syn-
chronized methods, and ATRHOW that may cause exceptions to be thrown
within synchronized contexts. Methods are in addition provided for printing out
the lock trees, a quite useful feature for understanding the lock pattern of the
threads in a program.

4 Integrating Runtime Analysis with Model Checking

The runtime analyses as described in the previous two sections can provide
useful information to a programmer as stand alone tools. In this section we
will describe how runtime analysis furthermore can be used to guide a model
checker. The basic idea is to �rst run the program in simulation mode, with
all the runtime analysis options turned on, thereby obtaining a set of warnings
about data races and lock order conicts. The threads causing the warnings,
called the race window, is then fed into the model checker, which will then
focus it attention on the threads that were involved in the warnings. For this to
work, the race window often must be extended to include threads that create or
otherwise inuence the threads in the original window. A runtime dependency
analysis is used as a basis for this extension of the race window.

4.1 Example

Consider the program in Figure 1, troubled by a deadlock potential caused by
the change indicated in Figure 5. If, instead of applying the runtime analysis,

we apply the JPF2 model checker to this program, the deadlock is immediately
found and reported via an error trail leading from the initial state to the dead-
locked state. Suppose, however, that this program is a subprogram of a larger
program that spawns other threads not inuencing the behavior of the two tasks
involved in the deadlock. In this case the model checker will likely fail to �nd
the deadlock since the state space becomes to big. Furthermore, if the other
threads don't deadlock, then the global system never deadlocks, although the
two tasks may. Hence, since the JPF2 model checker currently only looks for
global deadlocks, it will never be able to �nd this local one.

As an experiment, the programwas composed with an environment consisting
of 40 threads, grouped in pairs, each pair sharing access to an object by updating
it (each thread assigns 10; 000 di�erent values to the object). This environment
has more than 10160 states. When running JPF2 in runtime analysis mode, it
prints out 44 messages, one for each time a new locking pattern is recognized (40
of the patterns come from the environment). When these messages no longer get
printed, after 25 seconds, one can assume3 that all patterns have been detected,
and by hitting a key on the keyboard, the lock analysis is started. This identi�es
the original two Task threads as being the sinners. The model checker is now
launched where only the Main thread, and the two Task threads are allowed to
execute, and the deadlock is found by the model checker in 1:6 seconds. The
Main thread is included because it starts the Task threads, as concluded based
on a dependency analysis.

4.2 Algorithm

Most of the work has already been done during runtime analysis. An additional
data structure must be introduced, the race window, which contains the threads
that caused warnings to be issued. Before the model checker is activated, an
extended race window is calculated, which includes additional threads that may
inuence the behavior of threads in the original window. The extension is calcu-
lated on the basis of a dependency graph, created by a dependency analysis also
performed during the execution (a third kind of runtime analysis). This extended
window is then used in the subsequent model checking by freezing all threads not
in the window. That is, the scheduler simply does not schedule threads outside
the window.

Figure 11 illustrates the state variables and operations needed to create the
window and dependency graph, and the operation for extending the window. The
window is just a set of threads. The dependency graph (dgraph) is a mapping
from threads t to triples (A;R;W), where A is the ancestor thread that spawned
t, R is the set of objects that t reads from, and W is the set of objects that t
writes to. Whenever a runtime warning is issued, the `addWarning' operation is
called for each thread involved, adding it to the window. The operations `start-
Thread', `readObject', and `writeObject' update the dependency graph, which
after program termination is used by the `extendWindow' operation to extend

3
This is a judgment call of course.

the window. The dependency graph is updated when a thread starts another
thread with the start() method, and when a thread reads from, or writes to a
variable in an object. The `extendWindow' operation performs a �x-point calcu-
lation by creating the set of all threads \reachable" from the original window by
repeatedly including threads that have spawned threads in the window, and by
including threads that write to objects that are read by threads in the window.
The extended window is used to evaluate whether a thread should be scheduled
or not.

type Window = setof Thread;

type Dgraph = map from Thread to (Thread � setof Object � setof Object);

Window window; (* updated when a runtime warning is issued *)

Dgraph dgraph; (* updated when a thread starts a thread or accesses an object *)

addWarning(Thread thread)f
window = window [fthreadgg

startThread(Thread father,Thread son)f
dgraph = dgrap+ [son 7! (father; fg; fg)]g

readObject(Thread thread,Object object)f
let (A;R;W) = dgraph(thread)f

dgraph = dgraph+ [thread 7! (A;R [fobjectg;W)]gg

writeObject(Thread thread,Object object)f
let (A;R;W) = dgraph(thread)f

dgraph = dgraph+ [thread 7! (A;R;W [fobjectg)]gg

Window extendWindow(Window window,Dgraph dgraph)f
Window passed = fg;
Window waiting = window;

while (waiting 6= fg)f
get thread from waiting;

if (thread 2= passed)f
passed = passed [fthreadg;
let (A;R;W) = dgraph(thread)f

if (A 6= \topmost thread
00) waiting = waiting [fAg;

waiting = waiting [
fthread0 j let(; ;W

0) = dgraph(thread0) in W
0 \ R 6= fgg;

g
g

g;
return passed;g

Fig. 11. Operations for creating dependency graph and window.

4.3 Implementation

Two classes, whose interfaces are given below, represent respectively the depen-
dency graph and the race window. The dependency graph can be updated when
threads start threads, or access objects. Finally, a method allows to calculate
the set of threads reachable from an initial window, based on the dependencies
recorded. The race window is used to record threads involved in warnings. Before
the model checker is launched the extendWindow method will include threads
that inuence the original window by calling the reachablemethod. The model

checker scheduler will �nally call the contains method whenever it needs to
determine whether a particular thread is in the window, in which case it will be
allowed to execute.

interface iDepend{

static void startThread(ThreadInfo father,ThreadInfo son);

static void readObject(ThreadInfo th,int objref);

static void writeObject(ThreadInfo th,int objref);

static HashSet reachable(HashSet threads);

}

interface iRaceWindow{

static void addWarning(ThreadInfo th);

static void extendWindow();

static boolean contains(String threadName);

}

The following bytecodes are instrumented to operate on the dependency
graph: INVOKEVIRTUAL for invoking the start method on a thread; and
PUTFIELD, GETFIELD, PUTSTATIC, GETSTATIC for accessing variables.

5 The RAX Example

In this section we present an example drawn from a real NASA application. The
Remote Agent (RA) [24] is an AI-based spacecraft controller programmed in
LISP, that has been developed by NASA Ames Research Center and NASA's Jet
Propulsion Laboratory. It consists of three components: a Planner that generates
plans from mission goals; an Executive that executes the plans; and �nally a
Recovery system that monitors the RA's status, and suggests recovery actions
in case of failures. The Executive contains features of a multi-threaded operating
system, and the Planner and Executive exchange messages in an interactive
manner. Hence, this system is highly vulnerable to multi-threading errors. In
fact, during real ight in space on board the Deep-Space 1 spacecraft in May
1999, the RA deadlocked, causing the ground crew to put the spacecraft on
standby. The ground crew located the error using data from the spacecraft,
but asked as a challenge our group if we could locate the error using model
checking. This resulted in an e�ort described in [15], which in turn refers to

earlier work on the RA described in [16]. Here we shall give a short account of
the error and show how it could have been located with runtime analysis, and
furthermore potentially be con�rmed using model checking. For this purpose we
have modeled the error situation in Java. Note that this Java program represents
a small model of part of the RA, as described in [15]. However, although this
is not an automated application to a real full-size program, it is a su�ciently
convincing illustration of the approach in a real context.

The major two components to be modeled are events and tasks, as illustrated
in Figure 12. The �gure shows a Java class Event from which event objects can
be instantiated. The class has a local counter variable and two synchronized
methods, one for waiting on the event and one for signaling the event, releasing
all threads having called wait for event. In order to catch events that occur
while tasks are executing, each event has an associated event counter that is

increased whenever the event is signaled. A task then only calls wait for event

in case this counter has not changed, hence, there have been no new events since
it was last restarted from a call of wait for event. The �gure shows the de�nition
of one of the tasks, the planner. The body of the run method contains an in�nite
loop, where in each iteration a conditional call of wait for event is executed.
The condition is that no new events have arrived, hence the event counter is
unchanged.

class Event {

int count = 0;

public synchronized void wait_for_event() {

try{wait();}catch(InterruptedException e){};

}

public synchronized void signal_event(){

count = (count + 1) % 3;

notifyAll();

}

}

class Planner extends Thread{

Event event1,event2;

int count = 0;

public void run(){

while(true){

if (count == event1.count)

event1.wait_for_event();

count = event1.count;

/* Generate plan */

event2.signal_event();

}

}

}

Fig. 12. The RAX Error in Java.

To illustrate JPF2's integration of runtime analysis and model checking, the
example is made slightly more realistic by adding extra threads as before. The
program has 40 threads, each with 10; 000 states, in addition to the Planner and
Executive threads, yielding more than 10160 states in total. Then we apply JPF2
in its special runtime analysis/model checking mode. It immediately identi�es
the data race condition using the Eraser algorithm: the variable count in class
Event is accessed unsynchronized by the Planner's run method in the line: \if
(count == event1.count)", speci�cally the expression: event1.count. This may
be enough for a programmer to realize an error, but only if he or she can see
the consequences. The JPF2 model checker, on the other hand, can be used to
analyze the consequences. Hence, the model checker is launched on a thread win-
dow consisting of those threads involved in the data race condition: the Planner
and the Executive, locating the deadlock - all within 25 seconds. The error trace
shows that the Planner �rst evaluates the test \(count == event1.count)", which
evaluates to true; then, before the call of event1.wait for event() the Executive
signals the event, thereby increasing the event counter and notifying all waiting

threads, of which there however are none yet. The Planner now unconditionally
waits and misses the signal. The solution to this problem is to enclose the con-
ditional wait in a critical section such that no events can occur in between the
test and the wait. This error caused the deadlock on board the spacecraft.

6 Conclusions and Future Work

We have presented the GoodLock algorithm for detecting deadlock possibilities
in programs caused by locks being taken in di�erent orders by parallel running
threads. The algorithm is based on an analysis of a single run of the program,
and is therefore an example of a runtime analysis algorithm in the same family
as the Eraser algorithm which detects data races. The Visual Threads tool [27]
also provides a deadlock analysis. It still remains to explore how this relates
to the one presented here. The Assure tool [28] is another tool that performs
program runtime analysis, but the exact algorithms used have not been obtain-
able. The GoodLock algorithm seems to be unique in preventing false positives
in the presence of gate locks that \protect" lock order problems \further down".
We have furthermore suggested how to use the results of a runtime analysis
to guide a model checker for their mutual bene�t: the warnings yielded by the
runtime analysis can help focus the search of the model checker, which in turn
can help eliminate false positives generated by the runtime analysis, or generate
an error trace showing how the warnings can manifest themselves in an error.
In order to create the smallest possible self-contained sub-program to be model
checked based on warnings from the runtime analysis, a runtime dependency
analysis is introduced, which very simply records dependencies between threads
and objects. In addition to implementing all of the above mentioned techniques,
we have implemented the existing generic Eraser algorithm to work for Java by
instrumenting bytecodes.

Future work will consist of improving the Eraser algorithm to give less false
positives, in particular in the context of initializations of objects. The Good-
Lock algorithm will also be generalized to deal with deadlocks between multiple
threads. One can furthermore consider alternative kinds of runtime analysis, for
example analyzing issues concerned with the use of the built-in wait and notify

thread methods in Java. A runtime analysis typically cannot guarantee that a
program property is satis�ed since only a single run is examined. The results,
however, are often pretty accurate because the chosen run does not itself have
to violate the property, in order for the property's potential violation in other
runs to be detected. In order to achieve even higher assurance, one can of course
consider activating runtime analysis during model checking (rather than before
as described in this paper), and we intend to make that experiment. Note that
it will not be necessary to explore the entire state space in order for this si-
multaneous combination of runtime analysis and model checking to be useful.
Even though runtime analysis scales relatively well, it also su�ers from memory
problems when analyzing large programs. Various optimizations of data struc-
tures used to record runtime analysis information can be considered, for example

the memory optimizations suggested in [26]. One can furthermore consider only
doing runtime analysis on objects that are really shared by �rst determining
the sharing structure of the program. This in turn can be done using runtime
analysis, or some form of static analysis. Of course, at the extreme the runtime
analysis can be performed on a separate computer. We intend to investigate how
the runtime analysis information can be used to feed a program slicer [14], as an
alternative to the runtime dependency analysis described in this paper.

References

1. S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muoz, S. Owre, H. Rue, J. Rushby,

V. Rusu, H. Sadi, N. Shankar, E. Singerman, and A. Tiwari. An Overview of SAL.

In Proceedings of the 5th NASA Langley Formal Methods Workshop, June 2000.

2. S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of In�nite State

Systems Compositionally and Automatically. In CAV'98: Computer-Aided Veri�-

cation, number 1427 in LNCS, pages 319{331. Springer-Verlag, 1998.

3. D. L. Bruening. Systematic Testing of Multithreaded Java Programs. Master's

thesis, MIT, 1999.

4. T. Cattel. Modeling and Veri�cation of sC++ Applications. In Proceedings of

TACAS98: Tools and Algorithms for the Construction and Analysis of Systems,

volume 1384 of LNCS, LISBON, April 1998.

5. J. Corbett. Constructing Compact Models of Concurrent Java Programs. In Pro-

ceedings of the ACM Sigsoft Symposium on Software Testing and Analysis, March

1998. Clearwater Beach, Florida.

6. J. Corbett, M. Dwyer, J. Hatcli�, C. Pasareanu, Robby, S. Laubach, and H. Zheng.

Bandera : Extracting Finite-state Models from Java Source Code. In Proceedings

of the 22nd International Conference on Software Engineering, Limerich, Ireland,

June 2000. ACM Press.

7. P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of Logic

and Computation, 4(2):511{547, August 1992.

8. S. Das, D. Dill, and S. Park. Experience with Predicate Abstraction. In CAV

'99: 11th International Conference on Computer Aided Veri�cation, volume 1633

of LNCS, 1999.

9. C. Demartini, R. Iosif, and R. Sist. A Deadlock Detection Tool for Concurrent

Java Programs. Software Practice and Experience, 29(7):577{603, July 1999.

10. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended Static Checking.

Technical Report 159, Compaq Systems Research Center, Palo Alto, California,

USA, 1998.

11. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In

Proceedings of the 24th ACM Symposium on Principles of Programming Languages,

pages 174{186, Paris, January 1997.

12. J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. Addison

Wesley, 1996.

13. S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In CAV

'97: 6th International Conference on Computer Aided Veri�cation, volume 1254 of

LNCS, 1997.

14. J. Hatcli�, J.C. Corbett, M.B. Dwyer, S. Sokolowski, and H. Zheng. A Formal

Study of Slicing for Multi-threaded Programs with JVM Concurrency Primitives.

In Proc. of the 1999 Int. Symposium on Static Analysis, 1999.

15. K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser, and J. White.

Formal Analysis of the Remote Agent Before and After Flight. In Proceedings of

the 5th NASA Langley Formal Methods Workshop, June 2000.

16. K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space Craft Controller

using SPIN. In Proceedings of the 4th SPIN workshop, Paris, France, November

1998. To appear in IEEE Transactions of Software Engineering.

17. K. Havelund and T. Pressburger. Model Checking Java Programs using Java

PathFinder. International Journal on Software Tools for Technology Transfer

(STTT), 2(4):366{381, April 2000. Special issue of STTT containing selected sub-

missions to the 4th SPIN workshop, Paris, France, 1998.

18. K. Havelund and N. Shankar. Experiments in Theorem Proving and Model Check-

ing for Protocol Veri�cation. In M-C. Gaudel and J. Woodcock, editors, FME'96:

Industrial Bene�t and Advances in Formal Methods, volume 1051 of LNCS, pages

662{681. Springer-Verlag, 1996. An experiment in program abstraction.

19. K. Havelund and J. Skakkeb�k. Applying Model Checking in Java Veri�cation. In

Proceedings of the 7th Workshop on the SPIN Veri�cation System, volume 1680 of

LNCS, Toulouse, France., September 1999.

20. G. Holzmann and M. Smith. A Practical Method for Verifying Event-Driven Soft-

ware. In Proc. ICSE99, International Conference on Software Engineering, Los

Angeles. IEEE/ACM, May 1999.

21. G.J. Holzmann. The Model Checker Spin. IEEE Trans. on Software Engineering,

23(5):279{295, May 1997. Special issue on Formal Methods in Software Practice.

22. R. Iosif, C. Demartini, and R. Sisto. Modeling and Validation of JAVA Multi-

threaded Applications using SPIN. In Proceedings of the Fourth Workshop on the

SPIN Veri�cation System, Paris, November 1998.

23. JavaClass. http://www.inf.fu-berlin.de/~dahm/JavaClass.

24. N. Muscettola, P. Nayak, B. Pell, and B. Williams. Remote Agent: To Boldly

Go Where No AI System Has Gone Before. Arti�cial Intelligence, 103(1-2):5{48,

August 1998.

25. D. Park, U. Stern, and D. Dill. Java Model Checking. In Proc. of the First

International Workshop on Automated Program Analysis, Testing and Veri�cation,

Limerick, Ireland, June 2000.

26. S. Savage, M. Burrows, G. Nelson, and P. Sobalvarro. Eraser: A Dynamic Data

Race Detector for Multithreaded Programs. ACM Transactions on Computer Sys-

tems, 15(4):391{411, November 1997.

27. Visual Threads. http://www.unix.digital.com/visualthreads/index.html.

28. Assure. http://www.kai.com/assurej.

29. W. Visser, K. Havelund, G. Brat, and S. Park. Java PathFinder - Second Gener-

ation of a Java Model Checker. In Proc. of Post-CAV Workshop on Advances in

Veri�cation, Chicago, July 2000.

30. W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In Proc.

of ASE'2000: The 15th IEEE International Conference on Automated Software

Engineering. IEEE CS Press, September 2000.

31. W. Visser, S. Park, and J. Penix. Using Predicate Abstraction to Reduce Object-

Oriented Programs for Model Checking. In Proceedings of the 3rd ACM SIGSOFT

Workshop on Formal Methods in Software Practice, August 2000.

