CS    REAL FUNCTION GAMMA(X)
CD    DOUBLE PRECISION FUNCTION DGAMMA(X)
C----------------------------------------------------------------------
C
C This routine calculates the GAMMA function for a real argument X.
C   Computation is based on an algorithm outlined in reference 1.
C   The program uses rational functions that approximate the GAMMA
C   function to at least 20 significant decimal digits.  Coefficients
C   for the approximation over the interval (1,2) are unpublished.
C   Those for the approximation for X .GE. 12 are from reference 2.
C   The accuracy achieved depends on the arithmetic system, the
C   compiler, the intrinsic functions, and proper selection of the
C   machine-dependent constants.
C
C
C*******************************************************************
C*******************************************************************
C
C Explanation of machine-dependent constants
C
C beta   - radix for the floating-point representation
C maxexp - the smallest positive power of beta that overflows
C XBIG   - the largest argument for which GAMMA(X) is representable
C          in the machine, i.e., the solution to the equation
C                  GAMMA(XBIG) = beta**maxexp
C XINF   - the largest machine representable floating-point number;
C          approximately beta**maxexp
C EPS    - the smallest positive floating-point number such that
C          1.0+EPS .GT. 1.0
C XMININ - the smallest positive floating-point number such that
C          1/XMININ is machine representable
C
C     Approximate values for some important machines are:
C
C                            beta       maxexp        XBIG
C
C CRAY-1         (S.P.)        2         8191        966.961
C Cyber 180/855
C   under NOS    (S.P.)        2         1070        177.803
C IEEE (IBM/XT,
C   SUN, etc.)   (S.P.)        2          128        35.040
C IEEE (IBM/XT,
C   SUN, etc.)   (D.P.)        2         1024        171.624
C IBM 3033       (D.P.)       16           63        57.574
C VAX D-Format   (D.P.)        2          127        34.844
C VAX G-Format   (D.P.)        2         1023        171.489
C
C                            XINF         EPS        XMININ
C
C CRAY-1         (S.P.)   5.45E+2465   7.11E-15    1.84E-2466
C Cyber 180/855
C   under NOS    (S.P.)   1.26E+322    3.55E-15    3.14E-294
C IEEE (IBM/XT,
C   SUN, etc.)   (S.P.)   3.40E+38     1.19E-7     1.18E-38
C IEEE (IBM/XT,
C   SUN, etc.)   (D.P.)   1.79D+308    2.22D-16    2.23D-308
C IBM 3033       (D.P.)   7.23D+75     2.22D-16    1.39D-76
C VAX D-Format   (D.P.)   1.70D+38     1.39D-17    5.88D-39
C VAX G-Format   (D.P.)   8.98D+307    1.11D-16    1.12D-308
C
C*******************************************************************
C*******************************************************************
C
C Error returns
C
C  The program returns the value XINF for singularities or
C     when overflow would occur.  The computation is believed
C     to be free of underflow and overflow.
C
C
C  Intrinsic functions required are:
C
C     INT, DBLE, EXP, LOG, REAL, SIN
C
C
C References: "An Overview of Software Development for Special
C              Functions", W. J. Cody, Lecture Notes in Mathematics,
C              506, Numerical Analysis Dundee, 1975, G. A. Watson
C              (ed.), Springer Verlag, Berlin, 1976.
C
C              Computer Approximations, Hart, Et. Al., Wiley and
C              sons, New York, 1968.
C
C  Latest modification: October 12, 1989
C
C  Authors: W. J. Cody and L. Stoltz
C           Applied Mathematics Division
C           Argonne National Laboratory
C           Argonne, IL 60439
C
C----------------------------------------------------------------------
      INTEGER I,N
      LOGICAL PARITY
CS    REAL 
CD    DOUBLE PRECISION 
     1    C,CONV,EPS,FACT,HALF,ONE,P,PI,Q,RES,SQRTPI,SUM,TWELVE,
     2    TWO,X,XBIG,XDEN,XINF,XMININ,XNUM,Y,Y1,YSQ,Z,ZERO
      DIMENSION C(7),P(8),Q(8)
C----------------------------------------------------------------------
C  Mathematical constants
C----------------------------------------------------------------------
CS    DATA ONE,HALF,TWELVE,TWO,ZERO/1.0E0,0.5E0,12.0E0,2.0E0,0.0E0/,
CS   1     SQRTPI/0.9189385332046727417803297E0/,
CS   2     PI/3.1415926535897932384626434E0/
CD    DATA ONE,HALF,TWELVE,TWO,ZERO/1.0D0,0.5D0,12.0D0,2.0D0,0.0D0/,
CD   1     SQRTPI/0.9189385332046727417803297D0/,
CD   2     PI/3.1415926535897932384626434D0/
C----------------------------------------------------------------------
C  Machine dependent parameters
C----------------------------------------------------------------------
CS    DATA XBIG,XMININ,EPS/35.040E0,1.18E-38,1.19E-7/,
CS   1     XINF/3.4E38/
CD    DATA XBIG,XMININ,EPS/171.624D0,2.23D-308,2.22D-16/,
CD   1     XINF/1.79D308/
C----------------------------------------------------------------------
C  Numerator and denominator coefficients for rational minimax
C     approximation over (1,2).
C----------------------------------------------------------------------
CS    DATA P/-1.71618513886549492533811E+0,2.47656508055759199108314E+1,
CS   1       -3.79804256470945635097577E+2,6.29331155312818442661052E+2,
CS   2       8.66966202790413211295064E+2,-3.14512729688483675254357E+4,
CS   3       -3.61444134186911729807069E+4,6.64561438202405440627855E+4/
CS    DATA Q/-3.08402300119738975254353E+1,3.15350626979604161529144E+2,
CS   1      -1.01515636749021914166146E+3,-3.10777167157231109440444E+3,
CS   2        2.25381184209801510330112E+4,4.75584627752788110767815E+3,
CS   3      -1.34659959864969306392456E+5,-1.15132259675553483497211E+5/
CD    DATA P/-1.71618513886549492533811D+0,2.47656508055759199108314D+1,
CD   1       -3.79804256470945635097577D+2,6.29331155312818442661052D+2,
CD   2       8.66966202790413211295064D+2,-3.14512729688483675254357D+4,
CD   3       -3.61444134186911729807069D+4,6.64561438202405440627855D+4/
CD    DATA Q/-3.08402300119738975254353D+1,3.15350626979604161529144D+2,
CD   1      -1.01515636749021914166146D+3,-3.10777167157231109440444D+3,
CD   2        2.25381184209801510330112D+4,4.75584627752788110767815D+3,
CD   3      -1.34659959864969306392456D+5,-1.15132259675553483497211D+5/
C----------------------------------------------------------------------
C  Coefficients for minimax approximation over (12, INF).
C----------------------------------------------------------------------
CS    DATA C/-1.910444077728E-03,8.4171387781295E-04,
CS   1     -5.952379913043012E-04,7.93650793500350248E-04,
CS   2     -2.777777777777681622553E-03,8.333333333333333331554247E-02,
CS   3      5.7083835261E-03/
CD    DATA C/-1.910444077728D-03,8.4171387781295D-04,
CD   1     -5.952379913043012D-04,7.93650793500350248D-04,
CD   2     -2.777777777777681622553D-03,8.333333333333333331554247D-02,
CD   3      5.7083835261D-03/
C----------------------------------------------------------------------
C  Statement functions for conversion between integer and float
C----------------------------------------------------------------------
CS    CONV(I) = REAL(I)
CD    CONV(I) = DBLE(I)
      PARITY = .FALSE.
      FACT = ONE
      N = 0
      Y = X
      IF (Y .LE. ZERO) THEN
C----------------------------------------------------------------------
C  Argument is negative
C----------------------------------------------------------------------
            Y = -X
            Y1 = AINT(Y)
            RES = Y - Y1
            IF (RES .NE. ZERO) THEN
                  IF (Y1 .NE. AINT(Y1*HALF)*TWO) PARITY = .TRUE.
                  FACT = -PI / SIN(PI*RES)
                  Y = Y + ONE
               ELSE
                  RES = XINF
                  GO TO 900
            END IF
      END IF
C----------------------------------------------------------------------
C  Argument is positive
C----------------------------------------------------------------------
      IF (Y .LT. EPS) THEN
C----------------------------------------------------------------------
C  Argument .LT. EPS
C----------------------------------------------------------------------
            IF (Y .GE. XMININ) THEN
                  RES = ONE / Y
               ELSE
                  RES = XINF
                  GO TO 900
            END IF
         ELSE IF (Y .LT. TWELVE) THEN
            Y1 = Y
            IF (Y .LT. ONE) THEN
C----------------------------------------------------------------------
C  0.0 .LT. argument .LT. 1.0
C----------------------------------------------------------------------
                  Z = Y
                  Y = Y + ONE
               ELSE
C----------------------------------------------------------------------
C  1.0 .LT. argument .LT. 12.0, reduce argument if necessary
C----------------------------------------------------------------------
                  N = INT(Y) - 1
                  Y = Y - CONV(N)
                  Z = Y - ONE
            END IF
C----------------------------------------------------------------------
C  Evaluate approximation for 1.0 .LT. argument .LT. 2.0
C----------------------------------------------------------------------
            XNUM = ZERO
            XDEN = ONE
            DO 260 I = 1, 8
               XNUM = (XNUM + P(I)) * Z
               XDEN = XDEN * Z + Q(I)
  260       CONTINUE
            RES = XNUM / XDEN + ONE
            IF (Y1 .LT. Y) THEN
C----------------------------------------------------------------------
C  Adjust result for case  0.0 .LT. argument .LT. 1.0
C----------------------------------------------------------------------
                  RES = RES / Y1
               ELSE IF (Y1 .GT. Y) THEN
C----------------------------------------------------------------------
C  Adjust result for case  2.0 .LT. argument .LT. 12.0
C----------------------------------------------------------------------
                  DO 290 I = 1, N
                     RES = RES * Y
                     Y = Y + ONE
  290             CONTINUE
            END IF
         ELSE
C----------------------------------------------------------------------
C  Evaluate for argument .GE. 12.0,
C----------------------------------------------------------------------
            IF (Y .LE. XBIG) THEN
                  YSQ = Y * Y
                  SUM = C(7)
                  DO 350 I = 1, 6
                     SUM = SUM / YSQ + C(I)
  350             CONTINUE
                  SUM = SUM/Y - Y + SQRTPI
                  SUM = SUM + (Y-HALF)*LOG(Y)
                  RES = EXP(SUM)
               ELSE
                  RES = XINF
                  GO TO 900
            END IF
      END IF
C----------------------------------------------------------------------
C  Final adjustments and return
C----------------------------------------------------------------------
      IF (PARITY) RES = -RES
      IF (FACT .NE. ONE) RES = FACT / RES
CS900 GAMMA = RES
CD900 DGAMMA = RES
      RETURN
C ---------- Last line of GAMMA ----------
      END