*DECK ZBIRY SUBROUTINE ZBIRY (ZR, ZI, ID, KODE, BIR, BII, IERR) C***BEGIN PROLOGUE ZBIRY C***PURPOSE Compute the Airy function Bi(z) or its derivative dBi/dz C for complex argument z. A scaling option is available C to help avoid overflow. C***LIBRARY SLATEC C***CATEGORY C10D C***TYPE COMPLEX (CBIRY-C, ZBIRY-C) C***KEYWORDS AIRY FUNCTION, BESSEL FUNCTION OF ORDER ONE THIRD, C BESSEL FUNCTION OF ORDER TWO THIRDS C***AUTHOR Amos, D. E., (SNL) C***DESCRIPTION C C ***A DOUBLE PRECISION ROUTINE*** C On KODE=1, ZBIRY computes the complex Airy function Bi(z) C or its derivative dBi/dz on ID=0 or ID=1 respectively. C On KODE=2, a scaling option exp(abs(Re(zeta)))*Bi(z) or C exp(abs(Re(zeta)))*dBi/dz is provided to remove the C exponential behavior in both the left and right half planes C where zeta=(2/3)*z**(3/2). C C The Airy functions Bi(z) and dBi/dz are analytic in the C whole z-plane, and the scaling option does not destroy this C property. C C Input C ZR - DOUBLE PRECISION real part of argument Z C ZI - DOUBLE PRECISION imag part of argument Z C ID - Order of derivative, ID=0 or ID=1 C KODE - A parameter to indicate the scaling option C KODE=1 returns C BI=Bi(z) on ID=0 C BI=dBi/dz on ID=1 C at z=Z C =2 returns C BI=exp(abs(Re(zeta)))*Bi(z) on ID=0 C BI=exp(abs(Re(zeta)))*dBi/dz on ID=1 C at z=Z where zeta=(2/3)*z**(3/2) C C Output C BIR - DOUBLE PRECISION real part of result C BII - DOUBLE PRECISION imag part of result C IERR - Error flag C IERR=0 Normal return - COMPUTATION COMPLETED C IERR=1 Input error - NO COMPUTATION C IERR=2 Overflow - NO COMPUTATION C (Re(Z) too large with KODE=1) C IERR=3 Precision warning - COMPUTATION COMPLETED C (Result has less than half precision) C IERR=4 Precision error - NO COMPUTATION C (Result has no precision) C IERR=5 Algorithmic error - NO COMPUTATION C (Termination condition not met) C C *Long Description: C C Bi(z) and dBi/dz are computed from I Bessel functions by C C Bi(z) = c*sqrt(z)*( I(-1/3,zeta) + I(1/3,zeta) ) C dBi/dz = c* z *( I(-2/3,zeta) + I(2/3,zeta) ) C c = 1/sqrt(3) C zeta = (2/3)*z**(3/2) C C when abs(z)>1 and from power series when abs(z)<=1. C C In most complex variable computation, one must evaluate ele- C mentary functions. When the magnitude of Z is large, losses C of significance by argument reduction occur. Consequently, if C the magnitude of ZETA=(2/3)*Z**(3/2) exceeds U1=SQRT(0.5/UR), C then losses exceeding half precision are likely and an error C flag IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is C double precision unit roundoff limited to 18 digits precision. C Also, if the magnitude of ZETA is larger than U2=0.5/UR, then C all significance is lost and IERR=4. In order to use the INT C function, ZETA must be further restricted not to exceed C U3=I1MACH(9)=LARGEST INTEGER. Thus, the magnitude of ZETA C must be restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, C and U3 are approximately 2.0E+3, 4.2E+6, 2.1E+9 in single C precision and 4.7E+7, 2.3E+15, 2.1E+9 in double precision. C This makes U2 limiting is single precision and U3 limiting C in double precision. This means that the magnitude of Z C cannot exceed approximately 3.4E+4 in single precision and C 2.1E+6 in double precision. This also means that one can C expect to retain, in the worst cases on 32-bit machines, C no digits in single precision and only 6 digits in double C precision. C C The approximate relative error in the magnitude of a complex C Bessel function can be expressed as P*10**S where P=MAX(UNIT C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre- C sents the increase in error due to argument reduction in the C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))), C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may C have only absolute accuracy. This is most likely to occur C when one component (in magnitude) is larger than the other by C several orders of magnitude. If one component is 10**K larger C than the other, then one can expect only MAX(ABS(LOG10(P))-K, C 0) significant digits; or, stated another way, when K exceeds C the exponent of P, no significant digits remain in the smaller C component. However, the phase angle retains absolute accuracy C because, in complex arithmetic with precision P, the smaller C component will not (as a rule) decrease below P times the C magnitude of the larger component. In these extreme cases, C the principal phase angle is on the order of +P, -P, PI/2-P, C or -PI/2+P. C C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe- C matical Functions, National Bureau of Standards C Applied Mathematics Series 55, U. S. Department C of Commerce, Tenth Printing (1972) or later. C 2. D. E. Amos, Computation of Bessel Functions of C Complex Argument and Large Order, Report SAND83-0643, C Sandia National Laboratories, Albuquerque, NM, May C 1983. C 3. D. E. Amos, A Subroutine Package for Bessel Functions C of a Complex Argument and Nonnegative Order, Report C SAND85-1018, Sandia National Laboratory, Albuquerque, C NM, May 1985. C 4. D. E. Amos, A portable package for Bessel functions C of a complex argument and nonnegative order, ACM C Transactions on Mathematical Software, 12 (September C 1986), pp. 265-273. C C***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZBINU, ZDIV, ZSQRT C***REVISION HISTORY (YYMMDD) C 830501 DATE WRITTEN C 890801 REVISION DATE from Version 3.2 C 910415 Prologue converted to Version 4.0 format. (BAB) C 920128 Category corrected. (WRB) C 920811 Prologue revised. (DWL) C 930122 Added ZSQRT to EXTERNAL statement. (RWC) C***END PROLOGUE ZBIRY C COMPLEX BI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3 DOUBLE PRECISION AA, AD, AK, ALIM, ATRM, AZ, AZ3, BB, BII, BIR, * BK, CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, * DIG, DK, D1, D2, EAA, ELIM, FID, FMR, FNU, FNUL, PI, RL, R1M5, * SFAC, STI, STR, S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, * TRM2R, TTH, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, ZABS INTEGER ID, IERR, K, KODE, K1, K2, NZ, I1MACH DIMENSION CYR(2), CYI(2) EXTERNAL ZABS, ZSQRT DATA TTH, C1, C2, COEF, PI /6.66666666666666667D-01, * 6.14926627446000736D-01,4.48288357353826359D-01, * 5.77350269189625765D-01,3.14159265358979324D+00/ DATA CONER, CONEI /1.0D0,0.0D0/ C***FIRST EXECUTABLE STATEMENT ZBIRY IERR = 0 NZ=0 IF (ID.LT.0 .OR. ID.GT.1) IERR=1 IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 IF (IERR.NE.0) RETURN AZ = ZABS(ZR,ZI) TOL = MAX(D1MACH(4),1.0D-18) FID = ID IF (AZ.GT.1.0E0) GO TO 70 C----------------------------------------------------------------------- C POWER SERIES FOR ABS(Z).LE.1. C----------------------------------------------------------------------- S1R = CONER S1I = CONEI S2R = CONER S2I = CONEI IF (AZ.LT.TOL) GO TO 130 AA = AZ*AZ IF (AA.LT.TOL/AZ) GO TO 40 TRM1R = CONER TRM1I = CONEI TRM2R = CONER TRM2I = CONEI ATRM = 1.0D0 STR = ZR*ZR - ZI*ZI STI = ZR*ZI + ZI*ZR Z3R = STR*ZR - STI*ZI Z3I = STR*ZI + STI*ZR AZ3 = AZ*AA AK = 2.0D0 + FID BK = 3.0D0 - FID - FID CK = 4.0D0 - FID DK = 3.0D0 + FID + FID D1 = AK*DK D2 = BK*CK AD = MIN(D1,D2) AK = 24.0D0 + 9.0D0*FID BK = 30.0D0 - 9.0D0*FID DO 30 K=1,25 STR = (TRM1R*Z3R-TRM1I*Z3I)/D1 TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1 TRM1R = STR S1R = S1R + TRM1R S1I = S1I + TRM1I STR = (TRM2R*Z3R-TRM2I*Z3I)/D2 TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2 TRM2R = STR S2R = S2R + TRM2R S2I = S2I + TRM2I ATRM = ATRM*AZ3/AD D1 = D1 + AK D2 = D2 + BK AD = MIN(D1,D2) IF (ATRM.LT.TOL*AD) GO TO 40 AK = AK + 18.0D0 BK = BK + 18.0D0 30 CONTINUE 40 CONTINUE IF (ID.EQ.1) GO TO 50 BIR = C1*S1R + C2*(ZR*S2R-ZI*S2I) BII = C1*S1I + C2*(ZR*S2I+ZI*S2R) IF (KODE.EQ.1) RETURN CALL ZSQRT(ZR, ZI, STR, STI) ZTAR = TTH*(ZR*STR-ZI*STI) ZTAI = TTH*(ZR*STI+ZI*STR) AA = ZTAR AA = -ABS(AA) EAA = EXP(AA) BIR = BIR*EAA BII = BII*EAA RETURN 50 CONTINUE BIR = S2R*C2 BII = S2I*C2 IF (AZ.LE.TOL) GO TO 60 CC = C1/(1.0D0+FID) STR = S1R*ZR - S1I*ZI STI = S1R*ZI + S1I*ZR BIR = BIR + CC*(STR*ZR-STI*ZI) BII = BII + CC*(STR*ZI+STI*ZR) 60 CONTINUE IF (KODE.EQ.1) RETURN CALL ZSQRT(ZR, ZI, STR, STI) ZTAR = TTH*(ZR*STR-ZI*STI) ZTAI = TTH*(ZR*STI+ZI*STR) AA = ZTAR AA = -ABS(AA) EAA = EXP(AA) BIR = BIR*EAA BII = BII*EAA RETURN C----------------------------------------------------------------------- C CASE FOR ABS(Z).GT.1.0 C----------------------------------------------------------------------- 70 CONTINUE FNU = (1.0D0+FID)/3.0D0 C----------------------------------------------------------------------- C SET PARAMETERS RELATED TO MACHINE CONSTANTS. C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18. C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT. C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE. C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z. C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG). C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU. C----------------------------------------------------------------------- K1 = I1MACH(15) K2 = I1MACH(16) R1M5 = D1MACH(5) K = MIN(ABS(K1),ABS(K2)) ELIM = 2.303D0*(K*R1M5-3.0D0) K1 = I1MACH(14) - 1 AA = R1M5*K1 DIG = MIN(AA,18.0D0) AA = AA*2.303D0 ALIM = ELIM + MAX(-AA,-41.45D0) RL = 1.2D0*DIG + 3.0D0 FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0) C----------------------------------------------------------------------- C TEST FOR RANGE C----------------------------------------------------------------------- AA=0.5D0/TOL BB=I1MACH(9)*0.5D0 AA=MIN(AA,BB) AA=AA**TTH IF (AZ.GT.AA) GO TO 260 AA=SQRT(AA) IF (AZ.GT.AA) IERR=3 CALL ZSQRT(ZR, ZI, CSQR, CSQI) ZTAR = TTH*(ZR*CSQR-ZI*CSQI) ZTAI = TTH*(ZR*CSQI+ZI*CSQR) C----------------------------------------------------------------------- C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL C----------------------------------------------------------------------- SFAC = 1.0D0 AK = ZTAI IF (ZR.GE.0.0D0) GO TO 80 BK = ZTAR CK = -ABS(BK) ZTAR = CK ZTAI = AK 80 CONTINUE IF (ZI.NE.0.0D0 .OR. ZR.GT.0.0D0) GO TO 90 ZTAR = 0.0D0 ZTAI = AK 90 CONTINUE AA = ZTAR IF (KODE.EQ.2) GO TO 100 C----------------------------------------------------------------------- C OVERFLOW TEST C----------------------------------------------------------------------- BB = ABS(AA) IF (BB.LT.ALIM) GO TO 100 BB = BB + 0.25D0*LOG(AZ) SFAC = TOL IF (BB.GT.ELIM) GO TO 190 100 CONTINUE FMR = 0.0D0 IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110 FMR = PI IF (ZI.LT.0.0D0) FMR = -PI ZTAR = -ZTAR ZTAI = -ZTAI 110 CONTINUE C----------------------------------------------------------------------- C AA=FACTOR FOR ANALYTIC CONTINUATION OF I(FNU,ZTA) C KODE=2 RETURNS EXP(-ABS(XZTA))*I(FNU,ZTA) FROM CBESI C----------------------------------------------------------------------- CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, RL, FNUL, TOL, * ELIM, ALIM) IF (NZ.LT.0) GO TO 200 AA = FMR*FNU Z3R = SFAC STR = COS(AA) STI = SIN(AA) S1R = (STR*CYR(1)-STI*CYI(1))*Z3R S1I = (STR*CYI(1)+STI*CYR(1))*Z3R FNU = (2.0D0-FID)/3.0D0 CALL ZBINU(ZTAR, ZTAI, FNU, KODE, 2, CYR, CYI, NZ, RL, FNUL, TOL, * ELIM, ALIM) CYR(1) = CYR(1)*Z3R CYI(1) = CYI(1)*Z3R CYR(2) = CYR(2)*Z3R CYI(2) = CYI(2)*Z3R C----------------------------------------------------------------------- C BACKWARD RECUR ONE STEP FOR ORDERS -1/3 OR -2/3 C----------------------------------------------------------------------- CALL ZDIV(CYR(1), CYI(1), ZTAR, ZTAI, STR, STI) S2R = (FNU+FNU)*STR + CYR(2) S2I = (FNU+FNU)*STI + CYI(2) AA = FMR*(FNU-1.0D0) STR = COS(AA) STI = SIN(AA) S1R = COEF*(S1R+S2R*STR-S2I*STI) S1I = COEF*(S1I+S2R*STI+S2I*STR) IF (ID.EQ.1) GO TO 120 STR = CSQR*S1R - CSQI*S1I S1I = CSQR*S1I + CSQI*S1R S1R = STR BIR = S1R/SFAC BII = S1I/SFAC RETURN 120 CONTINUE STR = ZR*S1R - ZI*S1I S1I = ZR*S1I + ZI*S1R S1R = STR BIR = S1R/SFAC BII = S1I/SFAC RETURN 130 CONTINUE AA = C1*(1.0D0-FID) + FID*C2 BIR = AA BII = 0.0D0 RETURN 190 CONTINUE IERR=2 NZ=0 RETURN 200 CONTINUE IF(NZ.EQ.(-1)) GO TO 190 NZ=0 IERR=5 RETURN 260 CONTINUE IERR=4 NZ=0 RETURN END