*DECK SSYMM SUBROUTINE SSYMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, \$ C, LDC) C***BEGIN PROLOGUE SSYMM C***PURPOSE Multiply a real general matrix by a real symmetric matrix. C***LIBRARY SLATEC (BLAS) C***CATEGORY D1B6 C***TYPE SINGLE PRECISION (SSYMM-S, DSYMM-D, CSYMM-C) C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA C***AUTHOR Dongarra, J., (ANL) C Duff, I., (AERE) C Du Croz, J., (NAG) C Hammarling, S. (NAG) C***DESCRIPTION C C SSYMM performs one of the matrix-matrix operations C C C := alpha*A*B + beta*C, C C or C C C := alpha*B*A + beta*C, C C where alpha and beta are scalars, A is a symmetric matrix and B and C C are m by n matrices. C C Parameters C ========== C C SIDE - CHARACTER*1. C On entry, SIDE specifies whether the symmetric matrix A C appears on the left or right in the operation as follows: C C SIDE = 'L' or 'l' C := alpha*A*B + beta*C, C C SIDE = 'R' or 'r' C := alpha*B*A + beta*C, C C Unchanged on exit. C C UPLO - CHARACTER*1. C On entry, UPLO specifies whether the upper or lower C triangular part of the symmetric matrix A is to be C referenced as follows: C C UPLO = 'U' or 'u' Only the upper triangular part of the C symmetric matrix is to be referenced. C C UPLO = 'L' or 'l' Only the lower triangular part of the C symmetric matrix is to be referenced. C C Unchanged on exit. C C M - INTEGER. C On entry, M specifies the number of rows of the matrix C. C M must be at least zero. C Unchanged on exit. C C N - INTEGER. C On entry, N specifies the number of columns of the matrix C. C N must be at least zero. C Unchanged on exit. C C ALPHA - REAL . C On entry, ALPHA specifies the scalar alpha. C Unchanged on exit. C C A - REAL array of DIMENSION ( LDA, ka ), where ka is C m when SIDE = 'L' or 'l' and is n otherwise. C Before entry with SIDE = 'L' or 'l', the m by m part of C the array A must contain the symmetric matrix, such that C when UPLO = 'U' or 'u', the leading m by m upper triangular C part of the array A must contain the upper triangular part C of the symmetric matrix and the strictly lower triangular C part of A is not referenced, and when UPLO = 'L' or 'l', C the leading m by m lower triangular part of the array A C must contain the lower triangular part of the symmetric C matrix and the strictly upper triangular part of A is not C referenced. C Before entry with SIDE = 'R' or 'r', the n by n part of C the array A must contain the symmetric matrix, such that C when UPLO = 'U' or 'u', the leading n by n upper triangular C part of the array A must contain the upper triangular part C of the symmetric matrix and the strictly lower triangular C part of A is not referenced, and when UPLO = 'L' or 'l', C the leading n by n lower triangular part of the array A C must contain the lower triangular part of the symmetric C matrix and the strictly upper triangular part of A is not C referenced. C Unchanged on exit. C C LDA - INTEGER. C On entry, LDA specifies the first dimension of A as declared C in the calling (sub) program. When SIDE = 'L' or 'l' then C LDA must be at least max( 1, m ), otherwise LDA must be at C least max( 1, n ). C Unchanged on exit. C C B - REAL array of DIMENSION ( LDB, n ). C Before entry, the leading m by n part of the array B must C contain the matrix B. C Unchanged on exit. C C LDB - INTEGER. C On entry, LDB specifies the first dimension of B as declared C in the calling (sub) program. LDB must be at least C max( 1, m ). C Unchanged on exit. C C BETA - REAL . C On entry, BETA specifies the scalar beta. When BETA is C supplied as zero then C need not be set on input. C Unchanged on exit. C C C - REAL array of DIMENSION ( LDC, n ). C Before entry, the leading m by n part of the array C must C contain the matrix C, except when beta is zero, in which C case C need not be set on entry. C On exit, the array C is overwritten by the m by n updated C matrix. C C LDC - INTEGER. C On entry, LDC specifies the first dimension of C as declared C in the calling (sub) program. LDC must be at least C max( 1, m ). C Unchanged on exit. C C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S. C A set of level 3 basic linear algebra subprograms. C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990. C***ROUTINES CALLED LSAME, XERBLA C***REVISION HISTORY (YYMMDD) C 890208 DATE WRITTEN C 910605 Modified to meet SLATEC prologue standards. Only comment C lines were modified. (BKS) C***END PROLOGUE SSYMM C .. Scalar Arguments .. CHARACTER*1 SIDE, UPLO INTEGER M, N, LDA, LDB, LDC REAL ALPHA, BETA C .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), C( LDC, * ) C .. External Functions .. LOGICAL LSAME EXTERNAL LSAME C .. External Subroutines .. EXTERNAL XERBLA C .. Intrinsic Functions .. INTRINSIC MAX C .. Local Scalars .. LOGICAL UPPER INTEGER I, INFO, J, K, NROWA REAL TEMP1, TEMP2 C .. Parameters .. REAL ONE , ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) C***FIRST EXECUTABLE STATEMENT SSYMM C C Set NROWA as the number of rows of A. C IF( LSAME( SIDE, 'L' ) )THEN NROWA = M ELSE NROWA = N END IF UPPER = LSAME( UPLO, 'U' ) C C Test the input parameters. C INFO = 0 IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND. \$ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN INFO = 1 ELSE IF( ( .NOT.UPPER ).AND. \$ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN INFO = 2 ELSE IF( M .LT.0 )THEN INFO = 3 ELSE IF( N .LT.0 )THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN INFO = 7 ELSE IF( LDB.LT.MAX( 1, M ) )THEN INFO = 9 ELSE IF( LDC.LT.MAX( 1, M ) )THEN INFO = 12 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'SSYMM ', INFO ) RETURN END IF C C Quick return if possible. C IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. \$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) \$ RETURN C C And when alpha.eq.zero. C IF( ALPHA.EQ.ZERO )THEN IF( BETA.EQ.ZERO )THEN DO 20, J = 1, N DO 10, I = 1, M C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40, J = 1, N DO 30, I = 1, M C( I, J ) = BETA*C( I, J ) 30 CONTINUE 40 CONTINUE END IF RETURN END IF C C Start the operations. C IF( LSAME( SIDE, 'L' ) )THEN C C Form C := alpha*A*B + beta*C. C IF( UPPER )THEN DO 70, J = 1, N DO 60, I = 1, M TEMP1 = ALPHA*B( I, J ) TEMP2 = ZERO DO 50, K = 1, I - 1 C( K, J ) = C( K, J ) + TEMP1 *A( K, I ) TEMP2 = TEMP2 + B( K, J )*A( K, I ) 50 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2 ELSE C( I, J ) = BETA *C( I, J ) + \$ TEMP1*A( I, I ) + ALPHA*TEMP2 END IF 60 CONTINUE 70 CONTINUE ELSE DO 100, J = 1, N DO 90, I = M, 1, -1 TEMP1 = ALPHA*B( I, J ) TEMP2 = ZERO DO 80, K = I + 1, M C( K, J ) = C( K, J ) + TEMP1 *A( K, I ) TEMP2 = TEMP2 + B( K, J )*A( K, I ) 80 CONTINUE IF( BETA.EQ.ZERO )THEN C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2 ELSE C( I, J ) = BETA *C( I, J ) + \$ TEMP1*A( I, I ) + ALPHA*TEMP2 END IF 90 CONTINUE 100 CONTINUE END IF ELSE C C Form C := alpha*B*A + beta*C. C DO 170, J = 1, N TEMP1 = ALPHA*A( J, J ) IF( BETA.EQ.ZERO )THEN DO 110, I = 1, M C( I, J ) = TEMP1*B( I, J ) 110 CONTINUE ELSE DO 120, I = 1, M C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J ) 120 CONTINUE END IF DO 140, K = 1, J - 1 IF( UPPER )THEN TEMP1 = ALPHA*A( K, J ) ELSE TEMP1 = ALPHA*A( J, K ) END IF DO 130, I = 1, M C( I, J ) = C( I, J ) + TEMP1*B( I, K ) 130 CONTINUE 140 CONTINUE DO 160, K = J + 1, N IF( UPPER )THEN TEMP1 = ALPHA*A( J, K ) ELSE TEMP1 = ALPHA*A( K, J ) END IF DO 150, I = 1, M C( I, J ) = C( I, J ) + TEMP1*B( I, K ) 150 CONTINUE 160 CONTINUE 170 CONTINUE END IF C RETURN C C End of SSYMM . C END