C$TEST TTGR3 c main program common /cstak/ ds double precision ds(350000) external handle, bc, af integer ndx, ndy, istkgt, i, iumb, immm integer is(1000), iu, ix, iy, nu, kx integer nx, ky, ny, ilumb real errpar(2), tstart, dt, yb(4), lx, rs(1000) real rx, ws(1000), tstop logical ls(1000) complex cs(500) equivalence (ds(1), cs(1), ws(1), rs(1), is(1), ls(1)) c to solve the layered heat equation, with kappa = 1, 1/2, 1/3, c div . ( kappa(x,y) * grad u ) = ut + g c the port library stack and its aliases. c initialize the port library stack length. call istkin(350000, 4) call enter(1) nu = 1 lx = 0 rx = 1 do 1 i = 1, 4 yb(i) = i-1 1 continue kx = 2 ky = 2 ndx = 3 ndy = 3 tstart = 0 tstop = 1 dt = 1 errpar(1) = 1e-2 errpar(2) = 1e-4 c uniform grid. ix = iumb(lx, rx, ndx, kx, nx) c uniform grid. iy = ilumb(yb, 4, ndy, ky, ny) c make mult = ky-1. iy = immm(iy, ny, yb(2), ky-1) c make mult = ky-1. iy = immm(iy, ny, yb(3), ky-1) c space for the solution. iu = istkgt(nu*(nx-kx)*(ny-ky), 3) call setr(nu*(nx-kx)*(ny-ky), 0e0, ws(iu)) call ttgr(ws(iu), nu, kx, ws(ix), nx, ky, ws(iy), ny, tstart, 1 tstop, dt, af, bc, errpar, handle) call leave call wrapup stop end subroutine af(t, x, nx, y, ny, nu, u, ut, ux, uy, uxt, uyt 1 , a, au, aut, aux, auy, auxt, auyt, f, fu, fut, fux, fuy, fuxt, 2 fuyt) integer nu, nx, ny real t, x(nx), y(ny), u(nx, ny, nu), ut(nx, ny, nu), ux(nx, ny, 1 nu) real uy(nx, ny, nu), uxt(nx, ny, nu), uyt(nx, ny, nu), a(nx, ny, 1 nu, 2), au(nx, ny, nu, nu, 2), aut(nx, ny, nu, nu, 2) real aux(nx, ny, nu, nu, 2), auy(nx, ny, nu, nu, 2), auxt(nx, ny 1 , nu, nu, 2), auyt(nx, ny, nu, nu, 2), f(nx, ny, nu), fu(nx, 2 ny, nu, nu) real fut(nx, ny, nu, nu), fux(nx, ny, nu, nu), fuy(nx, ny, nu, nu) 1 , fuxt(nx, ny, nu, nu), fuyt(nx, ny, nu, nu) integer i, p, q real kappa logical temp do 7 i = 1, nu do 6 q = 1, ny do 5 p = 1, nx if (y(q) .ge. 1.) goto 1 kappa = 1 goto 4 1 if (y(q) .ge. 2.) goto 2 kappa = 0.5 goto 3 2 kappa = 1./3e0 3 continue 4 a(p, q, i, 1) = kappa*ux(p, q, i) aux(p, q, i, i, 1) = kappa a(p, q, i, 2) = kappa*uy(p, q, i) auy(p, q, i, i, 2) = kappa f(p, q, i) = ut(p, q, i) fut(p, q, i, i) = 1 f(p, q, i) = f(p, q, i)-y(q)/kappa temp = 1. .lt. y(q) if (temp) temp = y(q) .lt. 2. if (temp) f(p, q, i) = f(p, q, i)+1. temp = 2. .lt. y(q) if (temp) temp = y(q) .lt. 3. if (temp) f(p, q, i) = f(p, q, i)+3. 5 continue 6 continue 7 continue return end subroutine bc(t, x, nx, y, ny, lx, rx, ly, ry, u, ut, ux, 1 uy, uxt, uyt, nu, b, bu, but, bux, buy, buxt, buyt) integer nu, nx, ny real t, x(nx), y(ny), lx, rx, ly real ry, u(nx, ny, nu), ut(nx, ny, nu), ux(nx, ny, nu), uy(nx, ny, 1 nu), uxt(nx, ny, nu) real uyt(nx, ny, nu), b(nx, ny, nu), bu(nx, ny, nu, nu), but(nx, 1 ny, nu, nu), bux(nx, ny, nu, nu), buy(nx, ny, nu, nu) real buxt(nx, ny, nu, nu), buyt(nx, ny, nu, nu) integer i, j logical temp do 6 j = 1, ny do 5 i = 1, nx temp = x(i) .eq. lx if (.not. temp) temp = x(i) .eq. rx if (.not. temp) goto 1 bux(i, j, 1, 1) = 1 c left or right. c neumann bcs. b(i, j, 1) = ux(i, j, 1) goto 4 1 if (y(j) .ne. ly) goto 2 b(i, j, 1) = u(i, j, 1) c bottom. bu(i, j, 1, 1) = 1 goto 3 2 b(i, j, 1) = u(i, j, 1)-6.*t c top. bu(i, j, 1, 1) = 1 3 continue 4 continue 5 continue 6 continue return end subroutine handle(t0, u0, t, u, nv, dt, tstop) integer nv real t0, u0(nv), t, u(nv), dt, tstop common /a7tgrp/ errpar, nu, mxq, myq integer nu, mxq, myq real errpar(2) common /a7tgrm/ kx, ix, nx, ky, iy, ny integer kx, ix, nx, ky, iy, ny if (t0 .ne. t) goto 2 write (6, 1) t 1 format (16h restart for t =, 1pe10.2) return 2 call gerr(kx, ix, nx, ky, iy, ny, u, nu, t) return end subroutine gerr(kx, ix, nx, ky, iy, ny, u, nu, t) integer kx, ix, nx, ky, iy, ny integer nu real u(1), t common /cstak/ ds double precision ds(500) integer ifa, ita(2), ixa(2), nta(2), nxa(2), ixs integer iys, nxs, nys, istkgt, i, iewe integer ka(2), ma(2), is(1000), ilumd, i1mach real abs, erru, amax1, rs(1000), ws(1000) logical ls(1000) complex cs(500) integer temp, temp1, temp2 equivalence (ds(1), cs(1), ws(1), rs(1), is(1), ls(1)) c to get and print the error at each time-step. c u(nx-kx,ny,ky,nu). c the port library stack and its aliases. call enter(1) c find the error in the solution at 2*kx * 2*ky points / mesh rectangle. c x search grid. ixs = ilumd(ws(ix), nx, 2*kx, nxs) c y search grid. iys = ilumd(ws(iy), ny, 2*ky, nys) c u search grid values. iewe = istkgt(nxs*nys, 3) c the exact solution. call ewe(t, ws(ixs), nxs, ws(iys), nys, ws(iewe), nu) ka(1) = kx ka(2) = ky ita(1) = ix ita(2) = iy nta(1) = nx nta(2) = ny ixa(1) = ixs ixa(2) = iys nxa(1) = nxs nxa(2) = nys ma(1) = 0 c get solution. ma(2) = 0 c approximate solution values. ifa = istkgt(nxs*nys, 3) c evaluate them. call tsd1(2, ka, ws, ita, nta, u, ws, ixa, nxa, ma, ws(ifa)) c error in solution values. erru = 0 temp = nxs*nys do 1 i = 1, temp temp2 = iewe+i temp1 = ifa+i erru = amax1(erru, abs(ws(temp2-1)-ws(temp1-1))) 1 continue temp = i1mach(2) write (temp, 2) t, erru 2 format (14h error in u(.,, 1pe10.2, 3h) =, 1pe10.2) call leave return end subroutine ewe(t, x, nx, y, ny, u, nu) integer nu, nx, ny real t, x(nx), y(ny), u(nx, ny, nu) integer i, j, p c the exact solution. do 7 p = 1, nu do 6 i = 1, nx do 5 j = 1, ny if (y(j) .ge. 1.) goto 1 u(i, j, p) = t*y(j) goto 4 1 if (y(j) .ge. 2.) goto 2 u(i, j, p) = 2.*t*y(j)-t goto 3 2 u(i, j, p) = 3.*t*y(j)-3.*t 3 continue 4 continue 5 continue 6 continue 7 continue return end