C$TEST TTGR1 c main program common /cstak/ ds double precision ds(350000) external handle, bc, af integer ndx, ndy, istkgt, iumb, is(1000), iu integer ix, iy, nu, kx, nx, ky integer ny real errpar(2), tstart, dt, lx, ly, rx real ry, ws(1000), rs(1000), tstop logical ls(1000) complex cs(500) equivalence (ds(1), cs(1), ws(1), rs(1), is(1), ls(1)) c to solve the heat equation with solution u == t*x*y, c grad . ( u + ux + .1 * uy, u + uy + .1 * ux ) = ut + ux + uy +g(x,t) c the port library stack and its aliases. c initialize the port library stack length. call istkin(350000, 4) call enter(1) nu = 1 lx = 0 rx = 1 ly = 0 ry = 1 kx = 2 ky = 2 ndx = 3 ndy = 3 tstart = 0 tstop = 1 dt = 1 errpar(1) = 1e-2 errpar(2) = 1e-4 c uniform grid. ix = iumb(lx, rx, ndx, kx, nx) c uniform grid. iy = iumb(ly, ry, ndy, ky, ny) c space for the solution. iu = istkgt(nu*(nx-kx)*(ny-ky), 3) c initial conditions for u. call setr(nu*(nx-kx)*(ny-ky), 0e0, ws(iu)) call ttgr(ws(iu), nu, kx, ws(ix), nx, ky, ws(iy), ny, tstart, 1 tstop, dt, af, bc, errpar, handle) call leave call wrapup stop end subroutine af(t, x, nx, y, ny, nu, u, ut, ux, uy, uxt, uyt 1 , a, au, aut, aux, auy, auxt, auyt, f, fu, fut, fux, fuy, fuxt, 2 fuyt) integer nu, nx, ny real t, x(nx), y(ny), u(nx, ny, nu), ut(nx, ny, nu), ux(nx, ny, 1 nu) real uy(nx, ny, nu), uxt(nx, ny, nu), uyt(nx, ny, nu), a(nx, ny, 1 nu, 2), au(nx, ny, nu, nu, 2), aut(nx, ny, nu, nu, 2) real aux(nx, ny, nu, nu, 2), auy(nx, ny, nu, nu, 2), auxt(nx, ny 1 , nu, nu, 2), auyt(nx, ny, nu, nu, 2), f(nx, ny, nu), fu(nx, 2 ny, nu, nu) real fut(nx, ny, nu, nu), fux(nx, ny, nu, nu), fuy(nx, ny, nu, nu) 1 , fuxt(nx, ny, nu, nu), fuyt(nx, ny, nu, nu) integer i, p, q do 3 i = 1, nu do 2 q = 1, ny do 1 p = 1, nx a(p, q, i, 1) = ux(p, q, i)+.1*uy(p, q, i)+u(p, q, i) a(p, q, i, 2) = uy(p, q, i)+.1*ux(p, q, i)+u(p, q, i) aux(p, q, i, i, 1) = 1 auy(p, q, i, i, 2) = 1 auy(p, q, i, i, 1) = .1 aux(p, q, i, i, 2) = .1 au(p, q, i, i, 1) = 1 au(p, q, i, i, 2) = 1 f(p, q, i) = ut(p, q, i)+ux(p, q, i)+uy(p, q, i) fut(p, q, i, i) = 1 fux(p, q, i, i) = 1 fuy(p, q, i, i) = 1 f(p, q, i) = f(p, q, i)+.2*t-x(p)*y(q) 1 continue 2 continue 3 continue return end subroutine bc(t, x, nx, y, ny, lx, rx, ly, ry, u, ut, ux, 1 uy, uxt, uyt, nu, b, bu, but, bux, buy, buxt, buyt) integer nu, nx, ny real t, x(nx), y(ny), lx, rx, ly real ry, u(nx, ny, nu), ut(nx, ny, nu), ux(nx, ny, nu), uy(nx, ny, 1 nu), uxt(nx, ny, nu) real uyt(nx, ny, nu), b(nx, ny, nu), bu(nx, ny, nu, nu), but(nx, 1 ny, nu, nu), bux(nx, ny, nu, nu), buy(nx, ny, nu, nu) real buxt(nx, ny, nu, nu), buyt(nx, ny, nu, nu) integer i, j do 2 j = 1, ny do 1 i = 1, nx bu(i, j, 1, 1) = 1 b(i, j, 1) = u(i, j, 1)-t*x(i)*y(j) 1 continue 2 continue return end subroutine handle(t0, u0, t, u, nv, dt, tstop) integer nv real t0, u0(nv), t, u(nv), dt, tstop common /a7tgrp/ errpar, nu, mxq, myq integer nu, mxq, myq real errpar(2) common /a7tgrm/ kx, ix, nx, ky, iy, ny integer kx, ix, nx, ky, iy, ny if (t0 .ne. t) goto 2 write (6, 1) t 1 format (16h restart for t =, 1pe10.2) return c get and print the error. 2 call gerr(kx, ix, nx, ky, iy, ny, u, nu, t) return end subroutine gerr(kx, ix, nx, ky, iy, ny, u, nu, t) integer kx, ix, nx, ky, iy, ny integer nu real u(1), t common /cstak/ ds double precision ds(500) integer ifa, ita(2), ixa(2), nta(2), nxa(2), ixs integer iys, nxs, nys, istkgt, i, iewe integer ka(2), ma(2), is(1000), ilumd, i1mach real abs, erru, amax1, rs(1000), ws(1000) logical ls(1000) complex cs(500) integer temp, temp1, temp2 equivalence (ds(1), cs(1), ws(1), rs(1), is(1), ls(1)) c to get and print the error at each time-step. c u(nx-kx,ny0ky,nu). c the port library stack and its aliases. call enter(1) c find the error in the solution at 2*kx * 2*ky points / mesh rectangle. c x search grid. ixs = ilumd(ws(ix), nx, 2*kx, nxs) c y search grid. iys = ilumd(ws(iy), ny, 2*ky, nys) c u search grid values. iewe = istkgt(nxs*nys, 3) c the exact solution. call ewe(t, ws(ixs), nxs, ws(iys), nys, ws(iewe), nu) ka(1) = kx ka(2) = ky ita(1) = ix ita(2) = iy nta(1) = nx nta(2) = ny ixa(1) = ixs ixa(2) = iys nxa(1) = nxs nxa(2) = nys ma(1) = 0 c get solution. ma(2) = 0 c approximate solution values. ifa = istkgt(nxs*nys, 3) c evaluate them. call tsd1(2, ka, ws, ita, nta, u, ws, ixa, nxa, ma, ws(ifa)) c error in solution values. erru = 0 temp = nxs*nys do 1 i = 1, temp temp2 = iewe+i temp1 = ifa+i erru = amax1(erru, abs(ws(temp2-1)-ws(temp1-1))) 1 continue temp = i1mach(2) write (temp, 2) t, erru 2 format (14h error in u(.,, 1pe10.2, 3h) =, 1pe10.2) call leave return end subroutine ewe(t, x, nx, y, ny, u, nu) integer nu, nx, ny real t, x(nx), y(ny), u(nx, ny, nu) integer i, j, p c the exact solution. do 3 p = 1, nu do 2 i = 1, nx do 1 j = 1, ny u(i, j, p) = t*x(i)*y(j) 1 continue 2 continue 3 continue return end