References
Next: Index
Up: Templates for the Solution
Previous: Notation
References
- 1
-
J. AARDEN AND K.-E. KARLSSON, Preconditioned CG-type methods for
solving the coupled systems of fundamental semiconductor equations, BIT, 29
(1989), pp. 916-937.
- 2
-
L. ADAMS AND H. JORDAN, Is SOR color-blind?, SIAM J. Sci.
Statist. Comput., 7 (1986), pp. 490-506.
- 3
-
E. ANDERSON, ET. AL., LAPACK Users Guide, SIAM, Philadelphia,
1992.
- 4
-
J. APPLEYARD AND I. CHESHIRE, Nested factorization, in Reservoir
Simulation Symposium of the SPE, 1983.
Paper 12264.
- 5
-
M. ARIOLI, J. DEMMEL, AND I. DUFF, Solving sparse linear systems
with sparse backward error, SIAM J. Matrix Anal. Appl., 10 (1989),
pp. 165-190.
- 6
-
W. ARNOLDI, The principle of minimized iterations in the solution of
the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17-29.
- 7
-
S. ASHBY, CHEBYCODE: A Fortran implementation of
Manteuffel's adaptive Chebyshev algorithm, Tech. Rep. UIUCDCS-R-85-1203,
University of Illinois, 1985.
- 8
-
S. ASHBY, T. MANTEUFFEL, AND J. OTTO, A comparison of adaptive
Chebyshev and least squares polynomial preconditioning for Hermitian
positive definite linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 1-29.
- 9
-
S. ASHBY, T. MANTEUFFEL, AND P. SAYLOR, Adaptive polynomial
preconditioning for Hermitian indefinite linear systems, BIT, 29 (1989),
pp. 583-609.
- 10
-
S. F. ASHBY, T. A. MANTEUFFEL, AND P. E. SAYLOR, A taxonomy for
conjugate gradient methods, SIAM J. Numer. Anal., 27 (1990), pp. 1542-1568.
- 11
-
C. ASHCRAFT AND R. GRIMES, On vectorizing incomplete factorizations
and SSOR preconditioners, SIAM J. Sci. Statist. Comput., 9 (1988),
pp. 122-151.
- 12
-
O. AXELSSON, Incomplete block matrix factorization preconditioning
methods. The ultimate answer?, J. Comput. Appl. Math., 12& (1985),
pp. 3-18.
- 13
-
height 2pt depth -1.6pt width 23pt, A general incomplete
block-matrix factorization method, Linear Algebra Appl., 74 (1986),
pp. 179-190.
- 14
-
O. AXELSSON AND A. BARKER, Finite element solution of boundary value
problems. Theory and computation, Academic Press, Orlando, Fl., 1984.
- 15
-
O. AXELSSON AND V. EIJKHOUT, Vectorizable preconditioners for
elliptic difference equations in three space dimensions, J. Comput. Appl.
Math., 27 (1989), pp. 299-321.
- 16
-
height 2pt depth -1.6pt width 23pt, The nested recursive
two-level factorization method for nine-point difference matrices, SIAM J.
Sci. Statist. Comput., 12 (1991), pp. 1373-1400.
- 17
-
O. AXELSSON AND I. GUSTAFSSON, Iterative solution for the solution
of the Navier equations of elasticity, Comput. Methods Appl. Mech. Engrg.,
15 (1978), pp. 241-258.
- 18
-
O. AXELSSON AND G. LINDSKOG, On the eigenvalue distribution of a
class of preconditioning matrices, Numer. Math., 48 (1986), pp. 479-498.
- 19
-
height 2pt depth -1.6pt width 23pt, On the rate of
convergence of the preconditioned conjugate gradient method, Numer. Math.,
48 (1986), pp. 499-523.
- 20
-
O. AXELSSON AND N. MUNKSGAARD, Analysis of incomplete factorizations
with fixed storage allocation, in Preconditioning Methods - Theory and
Applications, D. Evans, ed., Gordon and Breach, New York, 1983, pp. 265-293.
- 21
-
O. AXELSSON AND B. POLMAN, On approximate factorization methods for
block-matrices suitable for vector and parallel processors, Linear Algebra
Appl., 77 (1986), pp. 3-26.
- 22
-
O. AXELSSON AND P. VASSILEVSKI, Algebraic multilevel preconditioning
methods, I, Numer. Math., 56 (1989), pp. 157-177.
- 23
-
height 2pt depth -1.6pt width 23pt, Algebraic multilevel
preconditioning methods, II, SIAM J. Numer. Anal., 57 (1990),
pp. 1569-1590.
- 24
-
O. AXELSSON AND P. S. VASSILEVSKI, A black box generalized conjugate
gradient solver with inner iterations and variable-step preconditioning,
SIAM J. Matrix Anal. Appl., 12 (1991), pp. 625-644.
- 25
-
R. BANK, Marching algorithms for elliptic boundary value problems;
II: The variable coefficient case, SIAM J. Numer. Anal., 14 (1977),
pp. 950-970.
- 26
-
R. BANK, T. CHAN, W. COUGHRAN JR., AND R. SMITH, The
Alternate-Block-Factorization procedure for systems of partial
differential equations, BIT, 29 (1989), pp. 938-954.
- 27
-
R. BANK AND D. ROSE, Marching algorithms for elliptic boundary value
problems. I: The constant coefficient case, SIAM J. Numer. Anal., 14
(1977), pp. 792-829.
- 28
-
R. E. BANK AND T. F. CHAN, An analysis of the composite step
Biconjugate gradient method, Numerische Mathematik, 66 (1993),
pp. 295-319.
- 29
-
R. E. BANK AND T. F. CHAN, A composite step bi-conjugate gradient
algorithm for nonsymmetric linear systems, Numer. Alg., (1994), pp. 1-16.
- 30
-
G. BAUDET, Asynchronous iterative methods for multiprocessors, J.
Assoc. Comput. Mach., 25 (1978), pp. 226-244.
- 31
-
R. BEAUWENS, On Axelsson's perturbations, Linear Algebra Appl.,
68 (1985), pp. 221-242.
- 32
-
height 2pt depth -1.6pt width 23pt, Approximate
factorizations with S/P consistently ordered -factors, BIT, 29
(1989), pp. 658-681.
- 33
-
R. BEAUWENS AND L. QUENON, Existence criteria for partial matrix
factorizations in iterative methods, SIAM J. Numer. Anal., 13 (1976),
pp. 615-643.
- 34
-
A. BJÖRCK AND T. ELFVING, Accelerated projection methods for
computing pseudo-inverse solutions of systems of linear equations, BIT, 19
(1979), pp. 145-163.
- 35
-
D. BRAESS, The contraction number of a multigrid method for solving
the Poisson equation, Numer. Math., 37 (1981), pp. 387-404.
- 36
-
J. H. BRAMBLE, J. E. PASCIAK, AND A. H. SCHATZ, The construction of
preconditioners for elliptic problems by substructuring, I, Mathematics of
Computation, 47 (1986), pp. 103- 134.
- 37
-
J. H. BRAMBLE, J. E. PASCIAK, J. WANG, AND J. XU, Convergence
estimates for product iterative methods with applications to domain
decompositions and multigrid, Math. Comp., 57(195) (1991), pp. 1-21.
- 38
-
R. BRAMLEY AND A. SAMEH, Row projection methods for large
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 168-193.
- 39
-
C. BREZINSKI AND H. SADOK, Avoiding breakdown in the CGS
algorithm, Numer. Alg., 1 (1991), pp. 199-206.
- 40
-
C. BREZINSKI, M. ZAGLIA, AND H. SADOK, Avoiding breakdown and near
breakdown in Lanczos type algorithms, Numer. Alg., 1 (1991), pp. 261-284.
- 41
-
height 2pt depth -1.6pt width 23pt, A breakdown free
Lanczos type algorithm for solving linear systems, Numer. Math., 63
(1992), pp. 29-38.
- 42
-
W. BRIGGS, A Multigrid Tutorial, SIAM, Philadelphia, 1977.
- 43
-
X.-C. CAI AND O. WIDLUND, Multiplicative Schwarz algorithms for
some nonsymmetric and indefinite problems, SIAM J. Numer. Anal., 30 (1993),
pp. 936-952.
- 44
-
T. CHAN, Fourier analysis of relaxed incomplete factorization
preconditioners, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 668-680.
- 45
-
T. CHAN, L. DE PILLIS, AND H. VAN DER VORST, A transpose-free
squared Lanczos algorithm and application to solving nonsymmetric linear
systems, Tech. Rep. CAM 91-17, UCLA, Dept. of Math., Los Angeles, CA
90024-1555, 1991.
- 46
-
T. CHAN, E. GALLOPOULOS, V. SIMONCINI, T. SZETO, AND C. TONG, A
quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric
systems, SIAM J. Sci. Comp., 15(2) (1994), pp. 338-347.
- 47
-
T. CHAN, R. GLOWINSKI, , J. PéRIAUX, AND O. WIDLUND, eds., Domain Decomposition Methods, Philadelphia, 1989, SIAM.
Proceedings of the Second International Symposium on Domain
Decomposition Methods, Los Angeles, CA, January 14 - 16, 1988.
- 48
-
height 2pt depth -1.6pt width 23pt, eds., Domain
Decomposition Methods, Philadelphia, 1990, SIAM.
Proceedings of the Third International Symposium on Domain
Decomposition Methods, Houston, TX, 1989.
- 49
-
height 2pt depth -1.6pt width 23pt, eds., Domain
Decomposition Methods, SIAM, Philadelphia, 1991.
Proceedings of the Fourth International Symposium on Domain
Decomposition Methods, Moscow, USSR, 1990.
- 50
-
T. CHAN AND C.-C. J. KUO, Two-color Fourier analysis of iterative
algorithms for elliptic problems with red/black ordering, SIAM J. Sci.
Statist. Comput., 11 (1990), pp. 767-793.
- 51
-
T. F. CHAN AND T. MATHEW, Domain decomposition algorithms, Acta
Numerica, (1994), pp. 61-144.
- 52
-
T. F. CHAN, T. P. MATHEW, AND J. P. SHAO, Efficient variants of the
vertex space domain decomposition algorithm, SIAM J. Sci. Comput., 15(6)
(1994), pp. 1349-1374.
- 53
-
T. F. CHAN AND J. SHAO, Optimal coarse grid size in domain
decomposition, J. Comput. Math., 12(4) (1994), pp. 291-297.
- 54
-
D. CHAZAN AND W. MIRANKER, Chaotic relaxation, Linear Algebra
Appl., 2 (1969), pp. 199-222.
- 55
-
A. CHRONOPOULOS AND C. GEAR, -step iterative methods for
symmetric linear systems, J. Comput. Appl. Math., 25 (1989), pp. 153-168.
- 56
-
P. CONCUS AND G. GOLUB, A generalized conjugate gradient method for
nonsymmetric systems of linear equations, in Computer methods in Applied
Sciences and Engineering, Second International Symposium, Dec 15-19, 1975;
Lecture Notes in Economics and Mathematical Systems, Vol. 134, Berlin, New
York, 1976, Springer-Verlag.
- 57
-
P. CONCUS, G. GOLUB, AND G. MEURANT, Block preconditioning for the
conjugate gradient method, SIAM J. Sci. Statist. Comput., 6 (1985),
pp. 220-252.
- 58
-
P. CONCUS, G. GOLUB, AND D. O'LEARY, A generalized conjugate
gradient method for the numerical solution of elliptic partial differential
equations, in Sparse Matrix Computations, J. Bunch and D. Rose, eds.,
Academic Press, New York, 1976, pp. 309-332.
- 59
-
P. CONCUS AND G. H. GOLUB, Use of fast direct methods for the
efficient numerical solution of nonseparable elliptic equations, SIAM J.
Numer. Anal., 10 (1973), pp. 1103-1120.
- 60
-
E. CUTHILL AND J. MCKEE, Reducing the bandwidth of sparse symmetric
matrices, in ACM Proceedings of the 24th National Conference, 1969.
- 61
-
E. D'AZEVEDO, V. EIJKHOUT, AND C. ROMINE, LAPACK working note 56:
Reducing communication costs in the conjugate gradient algorithm on
distributed memory multiprocessor, tech. report, Computer Science
Department, University of Tennessee, Knoxville, TN, 1993.
- 62
-
E. D'AZEVEDO AND C. ROMINE, Reducing communication costs in the
conjugate gradient algorithm on distributed memory multiprocessors, Tech.
Rep. ORNL/TM-12192, Oak Ridge National Lab, Oak Ridge, TN, 1992.
- 63
-
E. DE STURLER, A parallel restructured version of GMRES(m),
Tech. Rep. 91-85, Delft University of Technology, Delft, The Netherlands,
1991.
- 64
-
E. DE STURLER AND D. R. FOKKEMA, Nested Krylov methods and
preserving the orthogonality, Tech. Rep. Preprint 796, Utrecht University,
Utrecht, The Netherlands, 1993.
- 65
-
S. DEMKO, W. MOSS, AND P. SMITH, Decay rates for inverses of band
matrices, Mathematics of Computation, 43 (1984), pp. 491-499.
- 66
-
J. DEMMEL, The condition number of equivalence transformations that
block diagonalize matrix pencils, SIAM J. Numer. Anal., 20 (1983),
pp. 599-610.
- 67
-
J. DEMMEL, M. HEATH, AND H. VAN DER VORST, Parallel numerical linear
algebra, in Acta Numerica, Vol. 2, Cambridge Press, New York, 1993.
- 68
-
S. DOI, On parallelism and convergence of incomplete LU
factorizations, Appl. Numer. Math., 7 (1991), pp. 417-436.
- 69
-
J. DONGARRA, J. DUCROZ, I. DUFF, AND S. HAMMARLING, A set of level
3 Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 16
(1990), pp. 1-17.
- 70
-
J. DONGARRA, J. DUCROZ, S. HAMMARLING, AND R. HANSON, An extended
set of FORTRAN Basic Linear Algebra Subprograms, ACM Trans. Math.
Soft., 14 (1988), pp. 1-32.
- 71
-
J. DONGARRA, I. DUFF, D. SORENSEN, AND H. VAN DER VORST, Solving
Linear Systems on Vector and Shared Memory Computers, SIAM, Philadelphia,
PA, 1991.
- 72
-
J. DONGARRA AND E. GROSSE, Distribution of mathematical software via
electronic mail, Comm. ACM, 30 (1987), pp. 403-407.
- 73
-
J. DONGARRA, C. MOLER, J. BUNCH, AND G. STEWART, LINPACK Users'
Guide, SIAM, Philadelphia, 1979.
- 74
-
J. DONGARRA AND H. VAN DER VORST, Performance of various computers
using standard sparse linear equations solving techniques, in Computer
Benchmarks, J. Dongarra and W. Gentzsch, eds., Elsevier Science Publishers
B.V., New York, 1993, pp. 177-188.
- 75
-
F. DORR, The direct solution of the discrete Poisson equation on a
rectangle, SIAM Rev., 12 (1970), pp. 248-263.
- 76
-
M. DRYJA AND O. B. WIDLUND, Towards a unified theory of domain
decomposition algorithms for elliptic problems, Tech. Rep. 486, also
Ultracomputer Note 167, Department of Computer Science, Courant Institute,
1989.
- 77
-
D. DUBOIS, A. GREENBAUM, AND G. RODRIGUE, Approximating the inverse
of a matrix for use in iterative algorithms on vector processors, Computing,
22 (1979), pp. 257-268.
- 78
-
I. DUFF, R. GRIMES, AND J. LEWIS, Sparse matrix test problems, ACM
Trans. Math. Soft., 15 (1989), pp. 1-14.
- 79
-
I. DUFF AND G. MEURANT, The effect of ordering on preconditioned
conjugate gradients, BIT, 29 (1989), pp. 635-657.
- 80
-
I. S. DUFF, A. M. ERISMAN, AND J.K.REID, Direct methods for sparse
matrices, Oxford University Press, London, 1986.
- 81
-
T. DUPONT, R. KENDALL, AND H. RACHFORD, An approximate factorization
procedure for solving self-adjoint elliptic difference equations, SIAM J.
Numer. Anal., 5 (1968), pp. 559-573.
- 82
-
E. D'YAKONOV, The method of variable directions in solving systems
of finite difference equations, Soviet Math. Dokl., 2 (1961), pp. 577-580.
TOM 138, 271-274.
- 83
-
L. EHRLICH, An Ad-Hoc SOR method, J. Comput. Phys., 43 (1981),
pp. 31-45.
- 84
-
M. EIERMANN AND R. VARGA, Is the optimal best for the SOR
iteration method?, Linear Algebra Appl., 182 (1993), pp. 257-277.
- 85
-
V. EIJKHOUT, Analysis of parallel incomplete point factorizations,
Linear Algebra Appl., 154-156 (1991), pp. 723-740.
- 86
-
height 2pt depth -1.6pt width 23pt, Beware of
unperturbed modified incomplete point factorizations, in Proceedings of the
IMACS International Symposium on Iterative Methods in Linear Algebra,
Brussels, Belgium, R. Beauwens and P. de Groen, eds., 1992.
- 87
-
height 2pt depth -1.6pt width 23pt, LAPACK working
note 50: Distributed sparse data structures for linear algebra operations,
Tech. Rep. CS 92-169, Computer Science Department, University of Tennessee,
Knoxville, TN, 1992.
- 88
-
height 2pt depth -1.6pt width 23pt, LAPACK working
note 51: Qualitative properties of the conjugate gradient and Lanczos
methods in a matrix framework, Tech. Rep. CS 92-170, Computer Science
Department, University of Tennessee, Knoxville, TN, 1992.
- 89
-
V. EIJKHOUT AND B. POLMAN, Decay rates of inverses of banded
-matrices that are near to Toeplitz matrices, Linear Algebra Appl.,
109 (1988), pp. 247-277.
- 90
-
V. EIJKHOUT AND P. VASSILEVSKI, Positive definiteness aspects of
vectorizable preconditioners, Parallel Computing, 10 (1989), pp. 93-100.
- 91
-
S. EISENSTAT, Efficient implementation of a class of preconditioned
conjugate gradient methods, SIAM J. Sci. Statist. Comput., 2 (1981),
pp. 1-4.
- 92
-
R. ELKIN, Convergence theorems for Gauss-Seidel and other
minimization algorithms, Tech. Rep. 68-59, Computer Science Center,
University of Maryland, College Park, MD, Jan. 1968.
- 93
-
H. ELMAN, Approximate Schur complement preconditioners on serial
and parallel computers, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 581-605.
- 94
-
H. ELMAN AND M. SCHULTZ, Preconditioning by fast direct methods for
non self-adjoint nonseparable elliptic equations, SIAM J. Numer. Anal., 23
(1986), pp. 44-57.
- 95
-
L. ELSNER, A note on optimal block-scaling of matrices, Numer.
Math., 44 (1984), pp. 127-128.
- 96
-
V. FABER AND T. MANTEUFFEL, Necessary and sufficient conditions for
the existence of a conjugate gradient method, SIAM J. Numer. Anal., 21
(1984), pp. 315-339.
- 97
-
G. FAIRWEATHER, A. GOURLAY, AND A. MITCHELL, Some high accuracy
difference schemes with a splitting operator for equations of parabolic and
elliptic type, Numer. Math., 10 (1967), pp. 56-66.
- 98
-
R. FLETCHER, Conjugate gradient methods for indefinite systems, in
Numerical Analysis Dundee 1975, G. Watson, ed., Berlin, New York, 1976,
Springer Verlag, pp. 73-89.
- 99
-
G. FORSYTHE AND E. STRAUSS, On best conditioned matrices, Proc.
Amer. Math. Soc., 6 (1955), pp. 340-345.
- 100
-
R. FREUND, Conjugate gradient-type methods for linear systems with
complex symmetric coefficient matrices, SIAM J. Sci. Statist. Comput., 13
(1992), pp. 425-448.
- 101
-
R. FREUND, M. GUTKNECHT, AND N. NACHTIGAL, An implementation of the
look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci.
Comput., 14 (1993), pp. 137-158.
- 102
-
R. FREUND AND N. NACHTIGAL, QMR: A quasi-minimal residual method
for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315-339.
- 103
-
height 2pt depth -1.6pt width 23pt, An implementation of
the QMR method based on coupled two-term recurrences, SIAM J. Sci.
Statist. Comput., 15 (1994), pp. 313-337.
- 104
-
R. FREUND AND T. SZETO, A quasi-minimal residual squared algorithm
for non-Hermitian linear systems, Tech. Rep. CAM Report 92-19, UCLA Dept.
of Math., 1992.
- 105
-
R. W. FREUND, A transpose-free quasi-minimum residual algorithm for
non-Hermitian linear systems, SIAM J. Sci. Comput., 14 (1993),
pp. 470-482.
- 106
-
R. W. FREUND, G. H. GOLUB, AND N. M. NACHTIGAL, Iterative solution
of linear systems, Acta Numerica, (1992), pp. 57-100.
- 107
-
R. GLOWINSKI, G. H. GOLUB, G. A. MEURANT, AND J. PéRIAUX, eds., Domain Decomposition Methods for Partial Differential Equations, SIAM,
Philadelphia, 1988.
Proceedings of the First International Symposium on Domain
Decomposition Methods for Partial Differential Equations, Paris,
France, January 1987.
- 108
-
G. GOLUB AND D. O'LEARY, Some history of the conjugate gradient and
Lanczos methods, SIAM Rev., 31 (1989), pp. 50-102.
- 109
-
G. GOLUB AND C. VAN LOAN, Matrix Computations, second
edition, The Johns Hopkins University Press, Baltimore, 1989.
- 110
-
A. GREENBAUM AND Z. STRAKOS, Predicting the behavior of finite
precision Lanczos and conjugate gradient computations, SIAM J. Mat.
Anal. Appl., 13 (1992), pp. 121-137.
- 111
-
W. D. GROPP AND D. E. KEYES, Domain decomposition with local mesh
refinement, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 967-993.
- 112
-
I. GUSTAFSSON, A class of first-order factorization methods, BIT,
18 (1978), pp. 142-156.
- 113
-
M. H. GUTKNECHT, The unsymmetric Lanczos algorithms and their
relations to Páde approximation, continued fractions and the QD
algorithm, in Proceedings of the Copper Mountain Conference on Iterative
Methods, 1990.
- 114
-
height 2pt depth -1.6pt width 23pt, A completed theory
of the unsymmetric Lanczos process and related algorithms, part I, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 594-639.
- 115
-
height 2pt depth -1.6pt width 23pt, Variants of
Bi-CGSTAB for matrices with complex spectrum, SIAM J. Sci. Comp., 14
(1993), pp. 1020-1033.
- 116
-
height 2pt depth -1.6pt width 23pt, A completed theory
of the unsymmetric Lanczos process and related algorithms, part II, SIAM
J. Matrix Anal. Appl., 15 (1994), pp. 15-58.
- 117
-
W. HACKBUSCH, Multi-Grid Methods and Applications, Springer-Verlag,
Berlin, New York, 1985.
- 118
-
height 2pt depth -1.6pt width 23pt, Iterative Lösung
großer schwachbesetzter Gleichungssysteme, Teubner, Stuttgart, 1991.
- 119
-
A. HADJIDIMOS, On some high accuracy difference schemes for solving
elliptic equations, Numer. Math., 13 (1969), pp. 396-403.
- 120
-
L. HAGEMAN AND D. YOUNG, Applied Iterative Methods, Academic Press,
New York, 1981.
- 121
-
W. HAGER, Condition estimators, SIAM J. Sci. Statist. Comput., 5
(1984), pp. 311-316.
- 122
-
M. HESTENES AND E. STIEFEL, Methods of conjugate gradients for
solving linear systems, J. Res. Nat. Bur. Stand., 49 (1952), pp. 409-436.
- 123
-
M. R. HESTENES, Conjugacy and gradients, in A History of Scientific
Computing, Addison-Wesley, Reading, MA, 1990, pp. 167-179.
- 124
-
N. HIGHAM, Experience with a matrix norm estimator, SIAM J. Sci.
Statist. Comput., 11 (1990), pp. 804-809.
- 125
-
K. JEA AND D. YOUNG, Generalized conjugate-gradient acceleration of
nonsym- metrizable iterative methods, Linear Algebra Appl., 34 (1980),
pp. 159-194.
- 126
-
O. JOHNSON, C. MICCHELLI, AND G. PAUL, Polynomial preconditioning
for conjugate gradient calculation, SIAM J. Numer. Anal., 20 (1983),
pp. 362-376.
- 127
-
M. JONES AND P. PLASSMANN, Parallel solution of unstructed, sparse
systems of linear equations, in Proceedings of the Sixth SIAM conference on
Parallel Processing for Scientific Computing, R. Sincovec, D. Keyes,
M. Leuze, L. Petzold, and D. Reed, eds., SIAM, Philadelphia, pp. 471-475.
- 128
-
height 2pt depth -1.6pt width 23pt, A parallel graph
coloring heuristic, SIAM J. Sci. Statist. Comput., 14 (1993), pp. 654-669.
- 129
-
W. JOUBERT, Lanczos methods for the solution of nonsymmetric systems
of linear equations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 926-943.
- 130
-
W. KAHAN, Gauss-Seidel methods of solving large systems of linear
equations, PhD thesis, University of Toronto, 1958.
- 131
-
S. KANIEL, Estimates for some computational techniques in linear
algebra, Mathematics of Computation, 20 (1966), pp. 369-378.
- 132
-
D. KERSHAW, The incomplete Cholesky-conjugate gradient method for
the iterative solution of systems of linear equations, J. Comput. Phys., 26
(1978), pp. 43-65.
- 133
-
R. KETTLER, Analysis and comparison of relaxation schemes in robust
multigrid and preconditioned conjugate gradient methods, in Multigrid
Methods, Lecture Notes in Mathematics 960, W. Hackbusch and U. Trottenberg,
eds., Springer-Verlag, Berlin, New York, 1982, pp. 502-534.
- 134
-
height 2pt depth -1.6pt width 23pt, Linear multigrid
methods in numerical reservoir simulation, PhD thesis, Delft University of
Technology, Delft, The Netherlands, 1987.
- 135
-
D. E. KEYES, T. F. CHAN, G. MEURANT, J. S. SCROGGS, AND R. G. VOIGT,
eds., Domain Decomposition Methods For Partial Differential Equations,
SIAM, Philadelphia, 1992.
Proceedings of the Fifth International Symposium on Domain
Decomposition Methods, Norfolk, VA, 1991.
- 136
-
D. E. KEYES AND W. D. GROPP, A comparison of domain decomposition
techniques for elliptic partial differential equations and their parallel
implementation, SIAM J. Sci. Statist. Comput., 8 (1987), pp. s166 - s202.
- 137
-
height 2pt depth -1.6pt width 23pt, Domain decomposition
for nonsymmetric systems of equations: Examples from computational fluid
dynamics, in Domain Decomposition Methods, proceedings of the Second
Internation Symposium, Los Angeles, California, January 14-16, 1988, T. F.
Chan, R. Glowinski, J. Periaux, and O. B. Widlund, eds., Philadelphia, 1989,
SIAM, pp. 373-384.
- 138
-
height 2pt depth -1.6pt width 23pt, Domain decomposition
techniques for the parallel solution of nonsymmetric systems of elliptic
boundary value problems, Applied Num. Math., 6 (1989/1990), pp. 281-301.
- 139
-
S. K. KIM AND A. T. CHRONOPOULOS, A class of Lanczos-like
algorithms implemented on parallel computers, Parallel Comput., 17 (1991),
pp. 763-778.
- 140
-
D. R. KINCAID, J. R. RESPESS, D. M. YOUNG, AND R. G. GRIMES, ITPACK 2C: A Fortran package for solving large sparse linear systems
by adaptive accelerated iterative methods, ACM Trans. Math. Soft., 8 (1982),
pp. 302-322.
Algorithm 586.
- 141
-
L. Y. KOLOTILINA AND A. Y. YEREMIN, On a family of two-level
preconditionings of the incomlete block factorization type, Sov. J. Numer.
Anal. Math. Modelling, (1986), pp. 293-320.
- 142
-
C. LANCZOS, An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators, J. Res. Nat. Bur.
Stand., 45 (1950), pp. 255-282.
- 143
-
height 2pt depth -1.6pt width 23pt, Solution of systems
of linear equations by minimized iterations, J. Res. Nat. Bur. Stand., 49
(1952), pp. 33-53.
- 144
-
C. LAWSON, R. HANSON, D. KINCAID, AND F. KROGH, Basic Linear
Algebra Subprograms for FORTRAN usage, ACM Trans. Math. Soft., 5
(1979), pp. 308-325.
- 145
-
J. MAITRE AND F. MUSY, The contraction number of a class of
two-level methods; an exact evaluation for some finite element subspaces and
model problems, in Multigrid methods, Proceedings, Köln-Porz, 1981,
W. Hackbusch and U. Trottenberg, eds., vol. 960 of Lecture Notes in
Mathematics, 1982, pp. 535-544.
- 146
-
T. MANTEUFFEL, The Tchebychev iteration for nonsymmetric linear
systems, Numer. Math., 28 (1977), pp. 307-327.
- 147
-
height 2pt depth -1.6pt width 23pt, An incomplete
factorization technique for positive definite linear systems, Mathematics of
Computation, 34 (1980), pp. 473-497.
- 148
-
S. MCCORMICK, Multilevel Adaptive Methods for Partial Differential
Equations, SIAM, Philadelphia, 1989.
- 149
-
S. MCCORMICK AND J. THOMAS, The Fast Adaptive Composite grid
(FAC) method for elliptic equations, Mathematics of Computation, 46
(1986), pp. 439-456.
- 150
-
U. MEIER AND A. SAMEH, The behavior of conjugate gradient algorithms
on a multivector processor with a hierarchical memory, J. Comput. Appl.
Math., 24 (1988), pp. 13-32.
- 151
-
U. MEIER-YANG, Preconditioned conjugate gradient-like methods for
nonsymmetric linear systems, tech. rep., CSRD, University of Illinois,
Urbana, IL, April 1992.
- 152
-
J. MEIJERINK AND H. VAN DER VORST, An iterative solution method for
linear systems of which the coefficient matrix is a symmetric -matrix,
Mathematics of Computation, 31 (1977), pp. 148-162.
- 153
-
height 2pt depth -1.6pt width 23pt, Guidelines for the
usage of incomplete decompositions in solving sets of linear equations as
they occur in practical problems, J. Comput. Phys., 44 (1981), pp. 134-155.
- 154
-
R. MELHEM, Toward efficient implementation of preconditioned
conjugate gradient methods on vector supercomputers, Internat. J.
Supercomput. Appls., 1 (1987), pp. 77-98.
- 155
-
G. MEURANT, The block preconditioned conjugate gradient method on
vector computers, BIT, 24 (1984), pp. 623-633.
- 156
-
height 2pt depth -1.6pt width 23pt, Multitasking the
conjugate gradient method on the CRAY X-MP/48, Parallel Comput., 5
(1987), pp. 267-280.
- 157
-
N. MUNKSGAARD, Solving sparse symmetric sets of linear equations by
preconditioned conjugate gradients, ACM Trans. Math. Software, 6 (1980),
pp. 206-219.
- 158
-
N. NACHTIGAL, S. REDDY, AND L. TREFETHEN, How fast are nonsymmetric
matrix iterations?, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778-795.
- 159
-
N. NACHTIGAL, L. REICHEL, AND L. TREFETHEN, A hybrid GMRES
algorithm for nonsymmetric matrix iterations, SIAM J. Sci. Statist. Comput.,
13 (1992), pp. 796-825.
- 160
-
N. M. NACHTIGAL, A Look-Ahead Variant of the Lanczos Algorithm and
its Application to the Quasi-Minimal Residual Methods for Non-Hermitian
Linear Systems, PhD thesis, MIT, Cambridge, MA, 1991.
- 161
-
Y. NOTAY, Solving positive (semi)definite linear systems by
preconditioned iterative methods, in Preconditioned Conjugate Gradient
Methods, O. Axelsson and L. Kolotilina, eds., vol. 1457 of Lecture Notes in
Mathematics, Nijmegen, 1989, pp. 105-125.
- 162
-
height 2pt depth -1.6pt width 23pt, On the robustness of
modified incomplete factorization methods, Internat. J. Comput. Math., 40
(1992), pp. 121-141.
- 163
-
D. O'LEARY, The block conjugate gradient algorithm and related
methods, Linear Algebra Appl., 29 (1980), pp. 293-322.
- 164
-
height 2pt depth -1.6pt width 23pt, Ordering schemes for
parallel processing of certain mesh problems, SIAM J. Sci. Statist. Comput.,
5 (1984), pp. 620-632.
- 165
-
T. C. OPPE, W. D. JOUBERT, AND D. R. KINCAID, NSPCG user's guide,
version 1.0: A package for solving large sparse linear systems by various
iterative methods, Tech. Rep. CNA-216, Center for Numerical Analysis,
University of Texas at Austin, Austin, TX, April 1988.
- 166
-
J. M. ORTEGA, Introduction to Parallel and Vector Solution of Linear
Systems, Plenum Press, New York and London, 1988.
- 167
-
C. PAIGE, B. PARLETT, AND H. VAN DER VORST, Approximate solutions
and eigenvalue bounds from Krylov subspaces, Numer. Lin. Alg. Appls., 29
(1995), pp. 115-134.
- 168
-
C. PAIGE AND M. SAUNDERS, Solution of sparse indefinite systems of
linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617-629.
- 169
-
C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for sparse
linear equations and sparse least squares, ACM Trans. Math. Soft., 8 (1982),
pp. 43-71.
- 170
-
G. PAOLINI AND G. RADICATI DI BROZOLO, Data structures to
vectorize CG algorithms for general sparsity patterns, BIT, 29 (1989),
pp. 703-718.
- 171
-
B. PARLETT, The symmetric eigenvalue problem, Prentice-Hall,
London, 1980.
- 172
-
B. N. PARLETT, D. R. TAYLOR, AND Z. A. LIU, A look-ahead Lanczos
algorithm for unsymmetric matrices, Mathematics of Computation, 44 (1985),
pp. 105-124.
- 173
-
D. PEACEMAN AND J. H.H. RACHFORD, The numerical solution of
parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math.,
3 (1955), pp. 28-41.
- 174
-
C. POMMERELL, Solution of Large Unsymmetric Systems of Linear
Equations, vol. 17 of Series in Micro-electronics, volume 17, Hartung-Gorre
Verlag, Konstanz, 1992.
- 175
-
height 2pt depth -1.6pt width 23pt, Solution of large
unsymmetric systems of linear equations, PhD thesis, Swiss Federal Institute
of Technology, Zürich, Switzerland, 1992.
- 176
-
E. POOLE AND J. ORTEGA, Multicolor ICCG methods for vector
computers, Tech. Rep. RM 86-06, Department of Applied Mathematics,
University of Virginia, Charlottesville, VA, 1986.
- 177
-
A. QUARTERONI, J. PERIAUX, Y. KUZNETSOV, AND O. WIDLUND, eds., Domain Decomposition Methods in Science and Engineering,, vol. Contemporary
Mathematics 157, Providence, RI, 1994, AMS.
Proceedings of the Sixth International Symposium on Domain
Decomposition Methods, June 15-19, 1992, Como, Italy,.
- 178
-
G. RADICATI DI BROZOLO AND Y. ROBERT, Vector and parallel
CG-like algorithms for sparse non-symmetric systems, Tech. Rep. 681-M,
IMAG/TIM3, Grenoble, France, 1987.
- 179
-
J. REID, On the method of conjugate gradients for the solution of
large sparse systems of linear equations, in Large Sparse Sets of Linear
Equations, J. Reid, ed., Academic Press, London, 1971, pp. 231-254.
- 180
-
G. RODRIGUE AND D. WOLITZER, Preconditioning by incomplete block
cyclic reduction, Mathematics of Computation, 42 (1984), pp. 549-565.
- 181
-
Y. SAAD, The Lanczos biorthogonalization algorithm and other
oblique projection methods for solving large unsymmetric systems, SIAM J.
Numer. Anal., 19 (1982), pp. 485-506.
- 182
-
height 2pt depth -1.6pt width 23pt, Practical use of
some Krylov subspace methods for solving indefinite and nonsymmetric linear
systems, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 203-228.
- 183
-
height 2pt depth -1.6pt width 23pt, Practical use of
polynomial preconditionings for the conjugate gradient method, SIAM J. Sci.
Statist. Comput., 6 (1985), pp. 865-881.
- 184
-
height 2pt depth -1.6pt width 23pt, Preconditioning
techniques for indefinite and nonsymmetric linear systems, J. Comput. Appl.
Math., 24 (1988), pp. 89-105.
- 185
-
height 2pt depth -1.6pt width 23pt, Krylov subspace
methods on supercomputers, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 1200-1232.
- 186
-
height 2pt depth -1.6pt width 23pt, SPARSKIT: A basic
tool kit for sparse matrix computation, Tech. Rep. CSRD TR 1029, CSRD,
University of Illinois, Urbana, IL, 1990.
- 187
-
height 2pt depth -1.6pt width 23pt, A flexible
inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14
(1993), pp. 461-469.
- 188
-
Y. SAAD AND M. SCHULTZ, Conjugate gradient-like algorithms for
solving nonsymmetric linear systems, Mathematics of Computation, 44 (1985),
pp. 417-424.
- 189
-
height 2pt depth -1.6pt width 23pt, GMRES: A
generalized minimal residual algorithm for solving nonsymmetric linear
systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.
- 190
-
G. L. G. SLEIJPEN AND D. R. FOKKEMA, Bi-CGSTAB() for linear
equations involving unsymmetric matrices with complex spectrum, Elec. Trans.
Numer. Anal., 1 (1993), pp. 11-32.
- 191
-
B. F. SMITH, Domain decomposition algorithms for partial
differential equations of linear elasticity, Tech. Rep. 517, Department of
Computer Science, Courant Institute, 1990.
- 192
-
P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric
linear systems, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 36-52.
- 193
-
R. SOUTHWELL, Relaxation Methods in Theoretical Physics, Clarendon
Press, Oxford, 1946.
- 194
-
H. STONE, Iterative solution of implicit approximations of
multidimensional partial differential equations, SIAM J. Numer. Anal., 5
(1968), pp. 530-558.
- 195
-
P. SWARZTRAUBER, The methods of cyclic reduction, Fourier analysis
and the FACR algorithm for the discrete solution of Poisson's equation on
a rectangle, SIAM Rev., 19 (1977), pp. 490-501.
- 196
-
P. L. TALLEC, Domain decomposition methods in computational
mechanics, Computational Mechanics Advances, 1994.
- 197
-
C. TONG, A comparative study of preconditioned Lanczos methods for
nonsymmetric linear systems, Tech. Rep. SAND91-8240, Sandia Nat. Lab.,
Livermore, CA, 1992.
- 198
-
A. VAN DER SLUIS, Condition numbers and equilibration of matrices,
Numer. Math., 14 (1969), pp. 14-23.
- 199
-
A. VAN DER SLUIS AND H. VAN DER VORST, The rate of convergence of
conjugate gradients, Numer. Math., 48 (1986), pp. 543-560.
- 200
-
H. VAN DER VORST, Iterative solution methods for certain sparse
linear systems with a non-symmetric matrix arising from PDE-problems, J.
Comput. Phys., 44 (1981), pp. 1-19.
- 201
-
height 2pt depth -1.6pt width 23pt, A vectorizable
variant of some ICCG methods, SIAM J. Sci. Statist. Comput., 3 (1982),
pp. 350-356.
- 202
-
height 2pt depth -1.6pt width 23pt, Large tridiagonal
and block tridiagonal linear systems on vector and parallel computers,
Parallel Comput., 5 (1987), pp. 45-54.
- 203
-
height 2pt depth -1.6pt width 23pt, (M)ICCG for 2D
problems on vector computers, in Supercomputing, A.Lichnewsky and C.Saguez,
eds., North-Holland, 1988.
- 204
-
height 2pt depth -1.6pt width 23pt, High performance
preconditioning, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 1174-1185.
- 205
-
height 2pt depth -1.6pt width 23pt, ICCG and related
methods for 3D problems on vector computers, Computer Physics
Communications, 53 (1989), pp. 223-235.
- 206
-
height 2pt depth -1.6pt width 23pt, The convergence
behavior of preconditioned CG and CG-S in the presence of rounding
errors, in Preconditioned Conjugate Gradient Methods, O. Axelsson and L. Y.
Kolotilina, eds., vol. 1457 of Lecture Notes in Mathematics, Berlin, New
York, 1990, Springer-Verlag.
- 207
-
height 2pt depth -1.6pt width 23pt, Bi-CGSTAB: A
fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631-644.
- 208
-
H. VAN DER VORST AND J. MELISSEN, A Petrov-Galerkin type method
for solving where is symmetric complex, IEEE Trans.
Magnetics, 26 (1990), pp. 706-708.
- 209
-
H. VAN DER VORST AND C. VUIK, GMRESR: A family of nested GMRES
methods, Numer. Lin. Alg. Applic., 1 (1994), pp. 369-386.
- 210
-
J. VAN ROSENDALE, Minimizing inner product data dependencies in
conjugate gradient iteration, Tech. Rep. 172178, ICASE, NASA Langley
Research Center, 1983.
- 211
-
R. VARGA, Matrix Iterative Analysis, Prentice-Hall Inc., Englewood
Cliffs, NJ, 1962.
- 212
-
P. VASSILEVSKI, Preconditioning nonsymmetric and indefinite finite
element matrices, J. Numer. Alg. Appl., 1 (1992), pp. 59-76.
- 213
-
V. VOEVODIN, The problem of non-self-adjoint generalization of the
conjugate gradient method is closed, U.S.S.R. Comput. Maths. and Math.
Phys., 23 (1983), pp. 143-144.
- 214
-
H. F. WALKER, Implementation of the GMRES method using
Householder transformations, SIAM J. Sci. Statist. Comput., 9 (1988),
pp. 152-163.
- 215
-
P. WESSELING, An Introduction to Multigrid Methods, Wiley,
Chichester, 1991.
- 216
-
O. WIDLUND, A Lanczos method for a class of non-symmetric systems
of linear equations, SIAM J. Numer. Anal., 15 (1978), pp. 801-812.
- 217
-
D. YOUNG, Iterative solution of large linear systems, Academic
Press, New York, 1971.
- 218
-
H. YSERENTANT, On the multilevel splitting of finite element
spaces, Numer. Math., 49 (1986), pp. 379-412.
Jack Dongarra
Mon Nov 20 08:52:54 EST 1995