org.netlib.lapack
Class DGGHRD

java.lang.Object
  extended by org.netlib.lapack.DGGHRD

public class DGGHRD
extends java.lang.Object

DGGHRD is a simplified interface to the JLAPACK routine dgghrd.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines.  Using this interface also allows you
to omit offset and leading dimension arguments.  However, because
of these conversions, these routines will be slower than the low
level ones.  Following is the description from the original Fortran
source.  Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DGGHRD reduces a pair of real matrices (A,B) to generalized upper * Hessenberg form using orthogonal transformations, where A is a * general matrix and B is upper triangular. The form of the * generalized eigenvalue problem is * A*x = lambda*B*x, * and B is typically made upper triangular by computing its QR * factorization and moving the orthogonal matrix Q to the left side * of the equation. * * This subroutine simultaneously reduces A to a Hessenberg matrix H: * Q**T*A*Z = H * and transforms B to another upper triangular matrix T: * Q**T*B*Z = T * in order to reduce the problem to its standard form * H*y = lambda*T*y * where y = Z**T*x. * * The orthogonal matrices Q and Z are determined as products of Givens * rotations. They may either be formed explicitly, or they may be * postmultiplied into input matrices Q1 and Z1, so that * * Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T * * Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T * * If Q1 is the orthogonal matrix from the QR factorization of B in the * original equation A*x = lambda*B*x, then DGGHRD reduces the original * problem to generalized Hessenberg form. * * Arguments * ========= * * COMPQ (input) CHARACTER*1 * = 'N': do not compute Q; * = 'I': Q is initialized to the unit matrix, and the * orthogonal matrix Q is returned; * = 'V': Q must contain an orthogonal matrix Q1 on entry, * and the product Q1*Q is returned. * * COMPZ (input) CHARACTER*1 * = 'N': do not compute Z; * = 'I': Z is initialized to the unit matrix, and the * orthogonal matrix Z is returned; * = 'V': Z must contain an orthogonal matrix Z1 on entry, * and the product Z1*Z is returned. * * N (input) INTEGER * The order of the matrices A and B. N >= 0. * * ILO (input) INTEGER * IHI (input) INTEGER * ILO and IHI mark the rows and columns of A which are to be * reduced. It is assumed that A is already upper triangular * in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are * normally set by a previous call to SGGBAL; otherwise they * should be set to 1 and N respectively. * 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA, N) * On entry, the N-by-N general matrix to be reduced. * On exit, the upper triangle and the first subdiagonal of A * are overwritten with the upper Hessenberg matrix H, and the * rest is set to zero. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * B (input/output) DOUBLE PRECISION array, dimension (LDB, N) * On entry, the N-by-N upper triangular matrix B. * On exit, the upper triangular matrix T = Q**T B Z. The * elements below the diagonal are set to zero. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) * On entry, if COMPQ = 'V', the orthogonal matrix Q1, * typically from the QR factorization of B. * On exit, if COMPQ='I', the orthogonal matrix Q, and if * COMPQ = 'V', the product Q1*Q. * Not referenced if COMPQ='N'. * * LDQ (input) INTEGER * The leading dimension of the array Q. * LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. * * Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) * On entry, if COMPZ = 'V', the orthogonal matrix Z1. * On exit, if COMPZ='I', the orthogonal matrix Z, and if * COMPZ = 'V', the product Z1*Z. * Not referenced if COMPZ='N'. * * LDZ (input) INTEGER * The leading dimension of the array Z. * LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * * Further Details * =============== * * This routine reduces A to Hessenberg and B to triangular form by * an unblocked reduction, as described in _Matrix_Computations_, * by Golub and Van Loan (Johns Hopkins Press.) * * ===================================================================== * * .. Parameters ..


Constructor Summary
DGGHRD()
           
 
Method Summary
static void DGGHRD(java.lang.String compq, java.lang.String compz, int n, int ilo, int ihi, double[][] a, double[][] b, double[][] q, double[][] z, intW info)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

DGGHRD

public DGGHRD()
Method Detail

DGGHRD

public static void DGGHRD(java.lang.String compq,
                          java.lang.String compz,
                          int n,
                          int ilo,
                          int ihi,
                          double[][] a,
                          double[][] b,
                          double[][] q,
                          double[][] z,
                          intW info)