org.netlib.lapack
Class SGEGS
java.lang.Object
org.netlib.lapack.SGEGS
public class SGEGS
- extends java.lang.Object
SGEGS is a simplified interface to the JLAPACK routine sgegs.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines. Using this interface also allows you
to omit offset and leading dimension arguments. However, because
of these conversions, these routines will be slower than the low
level ones. Following is the description from the original Fortran
source. Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* This routine is deprecated and has been replaced by routine SGGES.
*
* SGEGS computes the eigenvalues, real Schur form, and, optionally,
* left and or/right Schur vectors of a real matrix pair (A,B).
* Given two square matrices A and B, the generalized real Schur
* factorization has the form
*
* A = Q*S*Z**T, B = Q*T*Z**T
*
* where Q and Z are orthogonal matrices, T is upper triangular, and S
* is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
* blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
* of eigenvalues of (A,B). The columns of Q are the left Schur vectors
* and the columns of Z are the right Schur vectors.
*
* If only the eigenvalues of (A,B) are needed, the driver routine
* SGEGV should be used instead. See SGEGV for a description of the
* eigenvalues of the generalized nonsymmetric eigenvalue problem
* (GNEP).
*
* Arguments
* =========
*
* JOBVSL (input) CHARACTER*1
* = 'N': do not compute the left Schur vectors;
* = 'V': compute the left Schur vectors (returned in VSL).
*
* JOBVSR (input) CHARACTER*1
* = 'N': do not compute the right Schur vectors;
* = 'V': compute the right Schur vectors (returned in VSR).
*
* N (input) INTEGER
* The order of the matrices A, B, VSL, and VSR. N >= 0.
*
* A (input/output) REAL array, dimension (LDA, N)
* On entry, the matrix A.
* On exit, the upper quasi-triangular matrix S from the
* generalized real Schur factorization.
*
* LDA (input) INTEGER
* The leading dimension of A. LDA >= max(1,N).
*
* B (input/output) REAL array, dimension (LDB, N)
* On entry, the matrix B.
* On exit, the upper triangular matrix T from the generalized
* real Schur factorization.
*
* LDB (input) INTEGER
* The leading dimension of B. LDB >= max(1,N).
*
* ALPHAR (output) REAL array, dimension (N)
* The real parts of each scalar alpha defining an eigenvalue
* of GNEP.
*
* ALPHAI (output) REAL array, dimension (N)
* The imaginary parts of each scalar alpha defining an
* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th
* eigenvalue is real; if positive, then the j-th and (j+1)-st
* eigenvalues are a complex conjugate pair, with
* ALPHAI(j+1) = -ALPHAI(j).
*
* BETA (output) REAL array, dimension (N)
* The scalars beta that define the eigenvalues of GNEP.
* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
* beta = BETA(j) represent the j-th eigenvalue of the matrix
* pair (A,B), in one of the forms lambda = alpha/beta or
* mu = beta/alpha. Since either lambda or mu may overflow,
* they should not, in general, be computed.
*
* VSL (output) REAL array, dimension (LDVSL,N)
* If JOBVSL = 'V', the matrix of left Schur vectors Q.
* Not referenced if JOBVSL = 'N'.
*
* LDVSL (input) INTEGER
* The leading dimension of the matrix VSL. LDVSL >=1, and
* if JOBVSL = 'V', LDVSL >= N.
*
* VSR (output) REAL array, dimension (LDVSR,N)
* If JOBVSR = 'V', the matrix of right Schur vectors Z.
* Not referenced if JOBVSR = 'N'.
*
* LDVSR (input) INTEGER
* The leading dimension of the matrix VSR. LDVSR >= 1, and
* if JOBVSR = 'V', LDVSR >= N.
*
* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,4*N).
* For good performance, LWORK must generally be larger.
* To compute the optimal value of LWORK, call ILAENV to get
* blocksizes (for SGEQRF, SORMQR, and SORGQR.) Then compute:
* NB -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR
* The optimal LWORK is 2*N + N*(NB+1).
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value.
* = 1,...,N:
* The QZ iteration failed. (A,B) are not in Schur
* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
* be correct for j=INFO+1,...,N.
* > N: errors that usually indicate LAPACK problems:
* =N+1: error return from SGGBAL
* =N+2: error return from SGEQRF
* =N+3: error return from SORMQR
* =N+4: error return from SORGQR
* =N+5: error return from SGGHRD
* =N+6: error return from SHGEQZ (other than failed
* iteration)
* =N+7: error return from SGGBAK (computing VSL)
* =N+8: error return from SGGBAK (computing VSR)
* =N+9: error return from SLASCL (various places)
*
* =====================================================================
*
* .. Parameters ..
Constructor Summary |
SGEGS()
|
Method Summary |
static void |
SGEGS(java.lang.String jobvsl,
java.lang.String jobvsr,
int n,
float[][] a,
float[][] b,
float[] alphar,
float[] alphai,
float[] beta,
float[][] vsl,
float[][] vsr,
float[] work,
int lwork,
intW info)
|
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
SGEGS
public SGEGS()
SGEGS
public static void SGEGS(java.lang.String jobvsl,
java.lang.String jobvsr,
int n,
float[][] a,
float[][] b,
float[] alphar,
float[] alphai,
float[] beta,
float[][] vsl,
float[][] vsr,
float[] work,
int lwork,
intW info)