org.netlib.lapack
Class SLAHQR
java.lang.Object
org.netlib.lapack.SLAHQR
public class SLAHQR
- extends java.lang.Object
SLAHQR is a simplified interface to the JLAPACK routine slahqr.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines. Using this interface also allows you
to omit offset and leading dimension arguments. However, because
of these conversions, these routines will be slower than the low
level ones. Following is the description from the original Fortran
source. Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* SLAHQR is an auxiliary routine called by SHSEQR to update the
* eigenvalues and Schur decomposition already computed by SHSEQR, by
* dealing with the Hessenberg submatrix in rows and columns ILO to
* IHI.
*
* Arguments
* =========
*
* WANTT (input) LOGICAL
* = .TRUE. : the full Schur form T is required;
* = .FALSE.: only eigenvalues are required.
*
* WANTZ (input) LOGICAL
* = .TRUE. : the matrix of Schur vectors Z is required;
* = .FALSE.: Schur vectors are not required.
*
* N (input) INTEGER
* The order of the matrix H. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* It is assumed that H is already upper quasi-triangular in
* rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
* ILO = 1). SLAHQR works primarily with the Hessenberg
* submatrix in rows and columns ILO to IHI, but applies
* transformations to all of H if WANTT is .TRUE..
* 1 <= ILO <= max(1,IHI); IHI <= N.
*
* H (input/output) REAL array, dimension (LDH,N)
* On entry, the upper Hessenberg matrix H.
* On exit, if INFO is zero and if WANTT is .TRUE., H is upper
* quasi-triangular in rows and columns ILO:IHI, with any
* 2-by-2 diagonal blocks in standard form. If INFO is zero
* and WANTT is .FALSE., the contents of H are unspecified on
* exit. The output state of H if INFO is nonzero is given
* below under the description of INFO.
*
* LDH (input) INTEGER
* The leading dimension of the array H. LDH >= max(1,N).
*
* WR (output) REAL array, dimension (N)
* WI (output) REAL array, dimension (N)
* The real and imaginary parts, respectively, of the computed
* eigenvalues ILO to IHI are stored in the corresponding
* elements of WR and WI. If two eigenvalues are computed as a
* complex conjugate pair, they are stored in consecutive
* elements of WR and WI, say the i-th and (i+1)th, with
* WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
* eigenvalues are stored in the same order as on the diagonal
* of the Schur form returned in H, with WR(i) = H(i,i), and, if
* H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
* WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
*
* ILOZ (input) INTEGER
* IHIZ (input) INTEGER
* Specify the rows of Z to which transformations must be
* applied if WANTZ is .TRUE..
* 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*
* Z (input/output) REAL array, dimension (LDZ,N)
* If WANTZ is .TRUE., on entry Z must contain the current
* matrix Z of transformations accumulated by SHSEQR, and on
* exit Z has been updated; transformations are applied only to
* the submatrix Z(ILOZ:IHIZ,ILO:IHI).
* If WANTZ is .FALSE., Z is not referenced.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* .GT. 0: If INFO = i, SLAHQR failed to compute all the
* eigenvalues ILO to IHI in a total of 30 iterations
* per eigenvalue; elements i+1:ihi of WR and WI
* contain those eigenvalues which have been
* successfully computed.
*
* If INFO .GT. 0 and WANTT is .FALSE., then on exit,
* the remaining unconverged eigenvalues are the
* eigenvalues of the upper Hessenberg matrix rows
* and columns ILO thorugh INFO of the final, output
* value of H.
*
* If INFO .GT. 0 and WANTT is .TRUE., then on exit
* (*) (initial value of H)*U = U*(final value of H)
* where U is an orthognal matrix. The final
* value of H is upper Hessenberg and triangular in
* rows and columns INFO+1 through IHI.
*
* If INFO .GT. 0 and WANTZ is .TRUE., then on exit
* (final value of Z) = (initial value of Z)*U
* where U is the orthogonal matrix in (*)
* (regardless of the value of WANTT.)
*
* Further Details
* ===============
*
* 02-96 Based on modifications by
* David Day, Sandia National Laboratory, USA
*
* 12-04 Further modifications by
* Ralph Byers, University of Kansas, USA
*
* This is a modified version of SLAHQR from LAPACK version 3.0.
* It is (1) more robust against overflow and underflow and
* (2) adopts the more conservative Ahues & Tisseur stopping
* criterion (LAWN 122, 1997).
*
* =========================================================
*
* .. Parameters ..
Method Summary |
static void |
SLAHQR(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
float[][] h,
float[] wr,
float[] wi,
int iloz,
int ihiz,
float[][] z,
intW info)
|
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
SLAHQR
public SLAHQR()
SLAHQR
public static void SLAHQR(boolean wantt,
boolean wantz,
int n,
int ilo,
int ihi,
float[][] h,
float[] wr,
float[] wi,
int iloz,
int ihiz,
float[][] z,
intW info)