*
************************************************************************
*
*     File of the DOUBLE PRECISION Level-3 BLAS.
*     ==========================================
*
*     SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
*    $                   BETA, C, LDC )
*
*     SUBROUTINE DSYMM ( SIDE,   UPLO,   M, N,    ALPHA, A, LDA, B, LDB,
*    $                   BETA, C, LDC )
*
*     SUBROUTINE DSYRK ( UPLO,   TRANS,     N, K, ALPHA, A, LDA,
*    $                   BETA, C, LDC )
*
*     SUBROUTINE DSYR2K( UPLO,   TRANS,     N, K, ALPHA, A, LDA, B, LDB,
*    $                   BETA, C, LDC )
*
*     SUBROUTINE DTRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
*    $                   B, LDB )
*
*     SUBROUTINE DTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
*    $                   B, LDB )
*
*     See:
*
*        Dongarra J. J.,   Du Croz J. J.,   Duff I.  and   Hammarling S.
*        A set of  Level 3  Basic Linear Algebra Subprograms.  Technical
*        Memorandum No.88 (Revision 1), Mathematics and Computer Science
*        Division,  Argonne National Laboratory, 9700 South Cass Avenue,
*        Argonne, Illinois 60439.
*
*
************************************************************************
*
      SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        TRANSA, TRANSB
      INTEGER            M, N, K, LDA, LDB, LDC
      DOUBLE PRECISION   ALPHA, BETA
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  DGEMM  performs one of the matrix-matrix operations
*
*     C := alpha*op( A )*op( B ) + beta*C,
*
*  where  op( X ) is one of
*
*     op( X ) = X   or   op( X ) = X',
*
*  alpha and beta are scalars, and A, B and C are matrices, with op( A )
*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
*
*  Parameters
*  ==========
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n',  op( A ) = A.
*
*              TRANSA = 'T' or 't',  op( A ) = A'.
*
*              TRANSA = 'C' or 'c',  op( A ) = A'.
*
*           Unchanged on exit.
*
*  TRANSB - CHARACTER*1.
*           On entry, TRANSB specifies the form of op( B ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSB = 'N' or 'n',  op( B ) = B.
*
*              TRANSB = 'T' or 't',  op( B ) = B'.
*
*              TRANSB = 'C' or 'c',  op( B ) = B'.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies  the number  of rows  of the  matrix
*           op( A )  and of the  matrix  C.  M  must  be at least  zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N  specifies the number  of columns of the matrix
*           op( B ) and the number of columns of the matrix C. N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry,  K  specifies  the number of columns of the matrix
*           op( A ) and the number of rows of the matrix op( B ). K must
*           be at least  zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise.
*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by m  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least  max( 1, k ).
*           Unchanged on exit.
*
*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise.
*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
*           part of the array  B  must contain the matrix  B,  otherwise
*           the leading  n by k  part of the array  B  must contain  the
*           matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then
*           LDB must be at least  max( 1, k ), otherwise  LDB must be at
*           least  max( 1, n ).
*           Unchanged on exit.
*
*  BETA   - DOUBLE PRECISION.
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n  matrix
*           ( alpha*op( A )*op( B ) + beta*C ).
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            NOTA, NOTB
      INTEGER            I, INFO, J, L, NCOLA, NROWA, NROWB
      DOUBLE PRECISION   TEMP
*     .. Parameters ..
      DOUBLE PRECISION   ONE         , ZERO
      PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Executable Statements ..
*
*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows
*     and  columns of  A  and the  number of  rows  of  B  respectively.
*
      NOTA  = LSAME( TRANSA, 'N' )
      NOTB  = LSAME( TRANSB, 'N' )
      IF( NOTA )THEN
         NROWA = M
         NCOLA = K
      ELSE
         NROWA = K
         NCOLA = M
      END IF
      IF( NOTB )THEN
         NROWB = K
      ELSE
         NROWB = N
      END IF
*
*     Test the input parameters.
*
      INFO = 0
      IF(      ( .NOT.NOTA                 ).AND.
     $         ( .NOT.LSAME( TRANSA, 'C' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'T' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.NOTB                 ).AND.
     $         ( .NOT.LSAME( TRANSB, 'C' ) ).AND.
     $         ( .NOT.LSAME( TRANSB, 'T' ) )      )THEN
         INFO = 2
      ELSE IF( M  .LT.0               )THEN
         INFO = 3
      ELSE IF( N  .LT.0               )THEN
         INFO = 4
      ELSE IF( K  .LT.0               )THEN
         INFO = 5
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 8
      ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN
         INFO = 10
      ELSE IF( LDC.LT.MAX( 1, M     ) )THEN
         INFO = 13
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DGEMM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And if  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( BETA.EQ.ZERO )THEN
            DO 20, J = 1, N
               DO 10, I = 1, M
                  C( I, J ) = ZERO
   10          CONTINUE
   20       CONTINUE
         ELSE
            DO 40, J = 1, N
               DO 30, I = 1, M
                  C( I, J ) = BETA*C( I, J )
   30          CONTINUE
   40       CONTINUE
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( NOTB )THEN
         IF( NOTA )THEN
*
*           Form  C := alpha*A*B + beta*C.
*
            DO 90, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 50, I = 1, M
                     C( I, J ) = ZERO
   50             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 60, I = 1, M
                     C( I, J ) = BETA*C( I, J )
   60             CONTINUE
               END IF
               DO 80, L = 1, K
                  IF( B( L, J ).NE.ZERO )THEN
                     TEMP = ALPHA*B( L, J )
                     DO 70, I = 1, M
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
   70                CONTINUE
                  END IF
   80          CONTINUE
   90       CONTINUE
         ELSE
*
*           Form  C := alpha*A'*B + beta*C
*
            DO 120, J = 1, N
               DO 110, I = 1, M
                  TEMP = ZERO
                  DO 100, L = 1, K
                     TEMP = TEMP + A( L, I )*B( L, J )
  100             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  110          CONTINUE
  120       CONTINUE
         END IF
      ELSE
         IF( NOTA )THEN
*
*           Form  C := alpha*A*B' + beta*C
*
            DO 170, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 130, I = 1, M
                     C( I, J ) = ZERO
  130             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 140, I = 1, M
                     C( I, J ) = BETA*C( I, J )
  140             CONTINUE
               END IF
               DO 160, L = 1, K
                  IF( B( J, L ).NE.ZERO )THEN
                     TEMP = ALPHA*B( J, L )
                     DO 150, I = 1, M
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
  150                CONTINUE
                  END IF
  160          CONTINUE
  170       CONTINUE
         ELSE
*
*           Form  C := alpha*A'*B' + beta*C
*
            DO 200, J = 1, N
               DO 190, I = 1, M
                  TEMP = ZERO
                  DO 180, L = 1, K
                     TEMP = TEMP + A( L, I )*B( J, L )
  180             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  190          CONTINUE
  200       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of DGEMM .
*
      END
*
************************************************************************
*
      SUBROUTINE DSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        SIDE, UPLO
      INTEGER            M, N, LDA, LDB, LDC
      DOUBLE PRECISION   ALPHA, BETA
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  DSYMM  performs one of the matrix-matrix operations
*
*     C := alpha*A*B + beta*C,
*
*  or
*
*     C := alpha*B*A + beta*C,
*
*  where alpha and beta are scalars,  A is a symmetric matrix and  B and
*  C are  m by n matrices.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE  specifies whether  the  symmetric matrix  A
*           appears on the  left or right  in the  operation as follows:
*
*              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
*
*              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of  the  symmetric  matrix   A  is  to  be
*           referenced as follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of the
*                                  symmetric matrix is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of the
*                                  symmetric matrix is to be referenced.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies the number of rows of the matrix  C.
*           M  must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix C.
*           N  must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
*           m  when  SIDE = 'L' or 'l'  and is  n otherwise.
*           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading m by m upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  m by m  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading n by n upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  n by n  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least  max( 1, n ).
*           Unchanged on exit.
*
*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
*           Before entry, the leading  m by n part of the array  B  must
*           contain the matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*  BETA   - DOUBLE PRECISION.
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n updated
*           matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, INFO, J, K, NROWA
      DOUBLE PRECISION   TEMP1, TEMP2
*     .. Parameters ..
      DOUBLE PRECISION   ONE         , ZERO
      PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Executable Statements ..
*
*     Set NROWA as the number of rows of A.
*
      IF( LSAME( SIDE, 'L' ) )THEN
         NROWA = M
      ELSE
         NROWA = N
      END IF
      UPPER = LSAME( UPLO, 'U' )
*
*     Test the input parameters.
*
      INFO = 0
      IF(      ( .NOT.LSAME( SIDE, 'L' ) ).AND.
     $         ( .NOT.LSAME( SIDE, 'R' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.UPPER              ).AND.
     $         ( .NOT.LSAME( UPLO, 'L' ) )      )THEN
         INFO = 2
      ELSE IF( M  .LT.0               )THEN
         INFO = 3
      ELSE IF( N  .LT.0               )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 7
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
         INFO = 9
      ELSE IF( LDC.LT.MAX( 1, M     ) )THEN
         INFO = 12
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DSYMM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
     $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( BETA.EQ.ZERO )THEN
            DO 20, J = 1, N
               DO 10, I = 1, M
                  C( I, J ) = ZERO
   10          CONTINUE
   20       CONTINUE
         ELSE
            DO 40, J = 1, N
               DO 30, I = 1, M
                  C( I, J ) = BETA*C( I, J )
   30          CONTINUE
   40       CONTINUE
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSAME( SIDE, 'L' ) )THEN
*
*        Form  C := alpha*A*B + beta*C.
*
         IF( UPPER )THEN
            DO 70, J = 1, N
               DO 60, I = 1, M
                  TEMP1 = ALPHA*B( I, J )
                  TEMP2 = ZERO
                  DO 50, K = 1, I - 1
                     C( K, J ) = C( K, J ) + TEMP1    *A( K, I )
                     TEMP2     = TEMP2     + B( K, J )*A( K, I )
   50             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
                  ELSE
                     C( I, J ) = BETA *C( I, J ) +
     $                           TEMP1*A( I, I ) + ALPHA*TEMP2
                  END IF
   60          CONTINUE
   70       CONTINUE
         ELSE
            DO 100, J = 1, N
               DO 90, I = M, 1, -1
                  TEMP1 = ALPHA*B( I, J )
                  TEMP2 = ZERO
                  DO 80, K = I + 1, M
                     C( K, J ) = C( K, J ) + TEMP1    *A( K, I )
                     TEMP2     = TEMP2     + B( K, J )*A( K, I )
   80             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = TEMP1*A( I, I ) + ALPHA*TEMP2
                  ELSE
                     C( I, J ) = BETA *C( I, J ) +
     $                           TEMP1*A( I, I ) + ALPHA*TEMP2
                  END IF
   90          CONTINUE
  100       CONTINUE
         END IF
      ELSE
*
*        Form  C := alpha*B*A + beta*C.
*
         DO 170, J = 1, N
            TEMP1 = ALPHA*A( J, J )
            IF( BETA.EQ.ZERO )THEN
               DO 110, I = 1, M
                  C( I, J ) = TEMP1*B( I, J )
  110          CONTINUE
            ELSE
               DO 120, I = 1, M
                  C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
  120          CONTINUE
            END IF
            DO 140, K = 1, J - 1
               IF( UPPER )THEN
                  TEMP1 = ALPHA*A( K, J )
               ELSE
                  TEMP1 = ALPHA*A( J, K )
               END IF
               DO 130, I = 1, M
                  C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  130          CONTINUE
  140       CONTINUE
            DO 160, K = J + 1, N
               IF( UPPER )THEN
                  TEMP1 = ALPHA*A( J, K )
               ELSE
                  TEMP1 = ALPHA*A( K, J )
               END IF
               DO 150, I = 1, M
                  C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  150          CONTINUE
  160       CONTINUE
  170    CONTINUE
      END IF
*
      RETURN
*
*     End of DSYMM .
*
      END
*
************************************************************************
*
      SUBROUTINE DSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        UPLO, TRANS
      INTEGER            N, K, LDA, LDC
      DOUBLE PRECISION   ALPHA, BETA
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  DSYRK  performs one of the symmetric rank k operations
*
*     C := alpha*A*A' + beta*C,
*
*  or
*
*     C := alpha*A'*A + beta*C,
*
*  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
*  and  A  is an  n by k  matrix in the first case and a  k by n  matrix
*  in the second case.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of the  array  C  is to be  referenced  as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry,  TRANS  specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   C := alpha*A*A' + beta*C.
*
*              TRANS = 'T' or 't'   C := alpha*A'*A + beta*C.
*
*              TRANS = 'C' or 'c'   C := alpha*A'*A + beta*C.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N specifies the order of the matrix C.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
*           of  columns   of  the   matrix   A,   and  on   entry   with
*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
*           of rows of the matrix  A.  K must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by n  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  BETA   - DOUBLE PRECISION.
*           On entry, BETA specifies the scalar beta.
*           Unchanged on exit.
*
*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
*           upper triangular part of the array C must contain the upper
*           triangular part  of the  symmetric matrix  and the strictly
*           lower triangular part of C is not referenced.  On exit, the
*           upper triangular part of the array  C is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
*           lower triangular part of the array C must contain the lower
*           triangular part  of the  symmetric matrix  and the strictly
*           upper triangular part of C is not referenced.  On exit, the
*           lower triangular part of the array  C is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, INFO, J, L, NROWA
      DOUBLE PRECISION   TEMP
*     .. Parameters ..
      DOUBLE PRECISION   ONE ,         ZERO
      PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      IF( LSAME( TRANS, 'N' ) )THEN
         NROWA = N
      ELSE
         NROWA = K
      END IF
      UPPER = LSAME( UPLO, 'U' )
*
      INFO = 0
      IF(      ( .NOT.UPPER               ).AND.
     $         ( .NOT.LSAME( UPLO , 'L' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANS, 'T' ) ).AND.
     $         ( .NOT.LSAME( TRANS, 'C' ) )      )THEN
         INFO = 2
      ELSE IF( N  .LT.0               )THEN
         INFO = 3
      ELSE IF( K  .LT.0               )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 7
      ELSE IF( LDC.LT.MAX( 1, N     ) )THEN
         INFO = 10
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DSYRK ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ).OR.
     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( UPPER )THEN
            IF( BETA.EQ.ZERO )THEN
               DO 20, J = 1, N
                  DO 10, I = 1, J
                     C( I, J ) = ZERO
   10             CONTINUE
   20          CONTINUE
            ELSE
               DO 40, J = 1, N
                  DO 30, I = 1, J
                     C( I, J ) = BETA*C( I, J )
   30             CONTINUE
   40          CONTINUE
            END IF
         ELSE
            IF( BETA.EQ.ZERO )THEN
               DO 60, J = 1, N
                  DO 50, I = J, N
                     C( I, J ) = ZERO
   50             CONTINUE
   60          CONTINUE
            ELSE
               DO 80, J = 1, N
                  DO 70, I = J, N
                     C( I, J ) = BETA*C( I, J )
   70             CONTINUE
   80          CONTINUE
            END IF
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  C := alpha*A*A' + beta*C.
*
         IF( UPPER )THEN
            DO 130, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 90, I = 1, J
                     C( I, J ) = ZERO
   90             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 100, I = 1, J
                     C( I, J ) = BETA*C( I, J )
  100             CONTINUE
               END IF
               DO 120, L = 1, K
                  IF( A( J, L ).NE.ZERO )THEN
                     TEMP = ALPHA*A( J, L )
                     DO 110, I = 1, J
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
  110                CONTINUE
                  END IF
  120          CONTINUE
  130       CONTINUE
         ELSE
            DO 180, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 140, I = J, N
                     C( I, J ) = ZERO
  140             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 150, I = J, N
                     C( I, J ) = BETA*C( I, J )
  150             CONTINUE
               END IF
               DO 170, L = 1, K
                  IF( A( J, L ).NE.ZERO )THEN
                     TEMP      = ALPHA*A( J, L )
                     DO 160, I = J, N
                        C( I, J ) = C( I, J ) + TEMP*A( I, L )
  160                CONTINUE
                  END IF
  170          CONTINUE
  180       CONTINUE
         END IF
      ELSE
*
*        Form  C := alpha*A'*A + beta*C.
*
         IF( UPPER )THEN
            DO 210, J = 1, N
               DO 200, I = 1, J
                  TEMP = ZERO
                  DO 190, L = 1, K
                     TEMP = TEMP + A( L, I )*A( L, J )
  190             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  200          CONTINUE
  210       CONTINUE
         ELSE
            DO 240, J = 1, N
               DO 230, I = J, N
                  TEMP = ZERO
                  DO 220, L = 1, K
                     TEMP = TEMP + A( L, I )*A( L, J )
  220             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP
                  ELSE
                     C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
                  END IF
  230          CONTINUE
  240       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of DSYRK .
*
      END
*
************************************************************************
*
      SUBROUTINE DSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB,
     $                   BETA, C, LDC )
*     .. Scalar Arguments ..
      CHARACTER*1        UPLO, TRANS
      INTEGER            N, K, LDA, LDB, LDC
      DOUBLE PRECISION   ALPHA, BETA
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  DSYR2K  performs one of the symmetric rank 2k operations
*
*     C := alpha*A*B' + alpha*B*A' + beta*C,
*
*  or
*
*     C := alpha*A'*B + alpha*B'*A + beta*C,
*
*  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
*  and  A and B  are  n by k  matrices  in the  first  case  and  k by n
*  matrices in the second case.
*
*  Parameters
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of the  array  C  is to be  referenced  as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry,  TRANS  specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   C := alpha*A*B' + alpha*B*A' +
*                                        beta*C.
*
*              TRANS = 'T' or 't'   C := alpha*A'*B + alpha*B'*A +
*                                        beta*C.
*
*              TRANS = 'C' or 'c'   C := alpha*A'*B + alpha*B'*A +
*                                        beta*C.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N specifies the order of the matrix C.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
*           of  columns  of the  matrices  A and B,  and on  entry  with
*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
*           of rows of the matrices  A and B.  K must be at least  zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by n  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  B  must contain the matrix  B,  otherwise
*           the leading  k by n  part of the array  B  must contain  the
*           matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDB must be at least  max( 1, n ), otherwise  LDB must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  BETA   - DOUBLE PRECISION.
*           On entry, BETA specifies the scalar beta.
*           Unchanged on exit.
*
*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
*           upper triangular part of the array C must contain the upper
*           triangular part  of the  symmetric matrix  and the strictly
*           lower triangular part of C is not referenced.  On exit, the
*           upper triangular part of the array  C is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
*           lower triangular part of the array C must contain the lower
*           triangular part  of the  symmetric matrix  and the strictly
*           upper triangular part of C is not referenced.  On exit, the
*           lower triangular part of the array  C is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, n ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, INFO, J, L, NROWA
      DOUBLE PRECISION   TEMP1, TEMP2
*     .. Parameters ..
      DOUBLE PRECISION   ONE         , ZERO
      PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      IF( LSAME( TRANS, 'N' ) )THEN
         NROWA = N
      ELSE
         NROWA = K
      END IF
      UPPER = LSAME( UPLO, 'U' )
*
      INFO = 0
      IF(      ( .NOT.UPPER               ).AND.
     $         ( .NOT.LSAME( UPLO , 'L' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANS, 'T' ) ).AND.
     $         ( .NOT.LSAME( TRANS, 'C' ) )      )THEN
         INFO = 2
      ELSE IF( N  .LT.0               )THEN
         INFO = 3
      ELSE IF( K  .LT.0               )THEN
         INFO = 4
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 7
      ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN
         INFO = 9
      ELSE IF( LDC.LT.MAX( 1, N     ) )THEN
         INFO = 12
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DSYR2K', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ).OR.
     $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         IF( UPPER )THEN
            IF( BETA.EQ.ZERO )THEN
               DO 20, J = 1, N
                  DO 10, I = 1, J
                     C( I, J ) = ZERO
   10             CONTINUE
   20          CONTINUE
            ELSE
               DO 40, J = 1, N
                  DO 30, I = 1, J
                     C( I, J ) = BETA*C( I, J )
   30             CONTINUE
   40          CONTINUE
            END IF
         ELSE
            IF( BETA.EQ.ZERO )THEN
               DO 60, J = 1, N
                  DO 50, I = J, N
                     C( I, J ) = ZERO
   50             CONTINUE
   60          CONTINUE
            ELSE
               DO 80, J = 1, N
                  DO 70, I = J, N
                     C( I, J ) = BETA*C( I, J )
   70             CONTINUE
   80          CONTINUE
            END IF
         END IF
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSAME( TRANS, 'N' ) )THEN
*
*        Form  C := alpha*A*B' + alpha*B*A' + C.
*
         IF( UPPER )THEN
            DO 130, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 90, I = 1, J
                     C( I, J ) = ZERO
   90             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 100, I = 1, J
                     C( I, J ) = BETA*C( I, J )
  100             CONTINUE
               END IF
               DO 120, L = 1, K
                  IF( ( A( J, L ).NE.ZERO ).OR.
     $                ( B( J, L ).NE.ZERO )     )THEN
                     TEMP1 = ALPHA*B( J, L )
                     TEMP2 = ALPHA*A( J, L )
                     DO 110, I = 1, J
                        C( I, J ) = C( I, J ) +
     $                              A( I, L )*TEMP1 + B( I, L )*TEMP2
  110                CONTINUE
                  END IF
  120          CONTINUE
  130       CONTINUE
         ELSE
            DO 180, J = 1, N
               IF( BETA.EQ.ZERO )THEN
                  DO 140, I = J, N
                     C( I, J ) = ZERO
  140             CONTINUE
               ELSE IF( BETA.NE.ONE )THEN
                  DO 150, I = J, N
                     C( I, J ) = BETA*C( I, J )
  150             CONTINUE
               END IF
               DO 170, L = 1, K
                  IF( ( A( J, L ).NE.ZERO ).OR.
     $                ( B( J, L ).NE.ZERO )     )THEN
                     TEMP1 = ALPHA*B( J, L )
                     TEMP2 = ALPHA*A( J, L )
                     DO 160, I = J, N
                        C( I, J ) = C( I, J ) +
     $                              A( I, L )*TEMP1 + B( I, L )*TEMP2
  160                CONTINUE
                  END IF
  170          CONTINUE
  180       CONTINUE
         END IF
      ELSE
*
*        Form  C := alpha*A'*B + alpha*B'*A + C.
*
         IF( UPPER )THEN
            DO 210, J = 1, N
               DO 200, I = 1, J
                  TEMP1 = ZERO
                  TEMP2 = ZERO
                  DO 190, L = 1, K
                     TEMP1 = TEMP1 + A( L, I )*B( L, J )
                     TEMP2 = TEMP2 + B( L, I )*A( L, J )
  190             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
                  ELSE
                     C( I, J ) = BETA *C( I, J ) +
     $                           ALPHA*TEMP1 + ALPHA*TEMP2
                  END IF
  200          CONTINUE
  210       CONTINUE
         ELSE
            DO 240, J = 1, N
               DO 230, I = J, N
                  TEMP1 = ZERO
                  TEMP2 = ZERO
                  DO 220, L = 1, K
                     TEMP1 = TEMP1 + A( L, I )*B( L, J )
                     TEMP2 = TEMP2 + B( L, I )*A( L, J )
  220             CONTINUE
                  IF( BETA.EQ.ZERO )THEN
                     C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
                  ELSE
                     C( I, J ) = BETA *C( I, J ) +
     $                           ALPHA*TEMP1 + ALPHA*TEMP2
                  END IF
  230          CONTINUE
  240       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of DSYR2K.
*
      END
*
************************************************************************
*
      SUBROUTINE DTRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
     $                   B, LDB )
*     .. Scalar Arguments ..
      CHARACTER*1        SIDE, UPLO, TRANSA, DIAG
      INTEGER            M, N, LDA, LDB
      DOUBLE PRECISION   ALPHA
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  DTRMM  performs one of the matrix-matrix operations
*
*     B := alpha*op( A )*B,   or   B := alpha*B*op( A ),
*
*  where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
*
*     op( A ) = A   or   op( A ) = A'.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE specifies whether  op( A ) multiplies B from
*           the left or right as follows:
*
*              SIDE = 'L' or 'l'   B := alpha*op( A )*B.
*
*              SIDE = 'R' or 'r'   B := alpha*B*op( A ).
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix A is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n'   op( A ) = A.
*
*              TRANSA = 'T' or 't'   op( A ) = A'.
*
*              TRANSA = 'C' or 'c'   op( A ) = A'.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit triangular
*           as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of B. M must be at
*           least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of B.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
*           zero then  A is not referenced and  B need not be set before
*           entry.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
*           upper triangular part of the array  A must contain the upper
*           triangular matrix  and the strictly lower triangular part of
*           A is not referenced.
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
*           lower triangular part of the array  A must contain the lower
*           triangular matrix  and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
*           A  are not referenced either,  but are assumed to be  unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
*           then LDA must be at least max( 1, n ).
*           Unchanged on exit.
*
*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
*           Before entry,  the leading  m by n part of the array  B must
*           contain the matrix  B,  and  on exit  is overwritten  by the
*           transformed matrix.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            LSIDE, NOUNIT, UPPER
      INTEGER            I, INFO, J, K, NROWA
      DOUBLE PRECISION   TEMP
*     .. Parameters ..
      DOUBLE PRECISION   ONE         , ZERO
      PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      LSIDE  = LSAME( SIDE  , 'L' )
      IF( LSIDE )THEN
         NROWA = M
      ELSE
         NROWA = N
      END IF
      NOUNIT = LSAME( DIAG  , 'N' )
      UPPER  = LSAME( UPLO  , 'U' )
*
      INFO   = 0
      IF(      ( .NOT.LSIDE                ).AND.
     $         ( .NOT.LSAME( SIDE  , 'R' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.UPPER                ).AND.
     $         ( .NOT.LSAME( UPLO  , 'L' ) )      )THEN
         INFO = 2
      ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'C' ) )      )THEN
         INFO = 3
      ELSE IF( ( .NOT.LSAME( DIAG  , 'U' ) ).AND.
     $         ( .NOT.LSAME( DIAG  , 'N' ) )      )THEN
         INFO = 4
      ELSE IF( M  .LT.0               )THEN
         INFO = 5
      ELSE IF( N  .LT.0               )THEN
         INFO = 6
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 9
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
         INFO = 11
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DTRMM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         DO 20, J = 1, N
            DO 10, I = 1, M
               B( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSIDE )THEN
         IF( LSAME( TRANSA, 'N' ) )THEN
*
*           Form  B := alpha*A*B.
*
            IF( UPPER )THEN
               DO 50, J = 1, N
                  DO 40, K = 1, M
                     IF( B( K, J ).NE.ZERO )THEN
                        TEMP = ALPHA*B( K, J )
                        DO 30, I = 1, K - 1
                           B( I, J ) = B( I, J ) + TEMP*A( I, K )
   30                   CONTINUE
                        IF( NOUNIT )
     $                     TEMP = TEMP*A( K, K )
                        B( K, J ) = TEMP
                     END IF
   40             CONTINUE
   50          CONTINUE
            ELSE
               DO 80, J = 1, N
                  DO 70 K = M, 1, -1
                     IF( B( K, J ).NE.ZERO )THEN
                        TEMP      = ALPHA*B( K, J )
                        B( K, J ) = TEMP
                        IF( NOUNIT )
     $                     B( K, J ) = B( K, J )*A( K, K )
                        DO 60, I = K + 1, M
                           B( I, J ) = B( I, J ) + TEMP*A( I, K )
   60                   CONTINUE
                     END IF
   70             CONTINUE
   80          CONTINUE
            END IF
         ELSE
*
*           Form  B := alpha*B*A'.
*
            IF( UPPER )THEN
               DO 110, J = 1, N
                  DO 100, I = M, 1, -1
                     TEMP = B( I, J )
                     IF( NOUNIT )
     $                  TEMP = TEMP*A( I, I )
                     DO 90, K = 1, I - 1
                        TEMP = TEMP + A( K, I )*B( K, J )
   90                CONTINUE
                     B( I, J ) = ALPHA*TEMP
  100             CONTINUE
  110          CONTINUE
            ELSE
               DO 140, J = 1, N
                  DO 130, I = 1, M
                     TEMP = B( I, J )
                     IF( NOUNIT )
     $                  TEMP = TEMP*A( I, I )
                     DO 120, K = I + 1, M
                        TEMP = TEMP + A( K, I )*B( K, J )
  120                CONTINUE
                     B( I, J ) = ALPHA*TEMP
  130             CONTINUE
  140          CONTINUE
            END IF
         END IF
      ELSE
         IF( LSAME( TRANSA, 'N' ) )THEN
*
*           Form  B := alpha*B*A.
*
            IF( UPPER )THEN
               DO 180, J = N, 1, -1
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*A( J, J )
                  DO 150, I = 1, M
                     B( I, J ) = TEMP*B( I, J )
  150             CONTINUE
                  DO 170, K = 1, J - 1
                     IF( A( K, J ).NE.ZERO )THEN
                        TEMP = ALPHA*A( K, J )
                        DO 160, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  160                   CONTINUE
                     END IF
  170             CONTINUE
  180          CONTINUE
            ELSE
               DO 220, J = 1, N
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*A( J, J )
                  DO 190, I = 1, M
                     B( I, J ) = TEMP*B( I, J )
  190             CONTINUE
                  DO 210, K = J + 1, N
                     IF( A( K, J ).NE.ZERO )THEN
                        TEMP = ALPHA*A( K, J )
                        DO 200, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  200                   CONTINUE
                     END IF
  210             CONTINUE
  220          CONTINUE
            END IF
         ELSE
*
*           Form  B := alpha*B*A'.
*
            IF( UPPER )THEN
               DO 260, K = 1, N
                  DO 240, J = 1, K - 1
                     IF( A( J, K ).NE.ZERO )THEN
                        TEMP = ALPHA*A( J, K )
                        DO 230, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  230                   CONTINUE
                     END IF
  240             CONTINUE
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*A( K, K )
                  IF( TEMP.NE.ONE )THEN
                     DO 250, I = 1, M
                        B( I, K ) = TEMP*B( I, K )
  250                CONTINUE
                  END IF
  260          CONTINUE
            ELSE
               DO 300, K = N, 1, -1
                  DO 280, J = K + 1, N
                     IF( A( J, K ).NE.ZERO )THEN
                        TEMP = ALPHA*A( J, K )
                        DO 270, I = 1, M
                           B( I, J ) = B( I, J ) + TEMP*B( I, K )
  270                   CONTINUE
                     END IF
  280             CONTINUE
                  TEMP = ALPHA
                  IF( NOUNIT )
     $               TEMP = TEMP*A( K, K )
                  IF( TEMP.NE.ONE )THEN
                     DO 290, I = 1, M
                        B( I, K ) = TEMP*B( I, K )
  290                CONTINUE
                  END IF
  300          CONTINUE
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of DTRMM .
*
      END
*
************************************************************************
*
      SUBROUTINE DTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
     $                   B, LDB )
*     .. Scalar Arguments ..
      CHARACTER*1        SIDE, UPLO, TRANSA, DIAG
      INTEGER            M, N, LDA, LDB
      DOUBLE PRECISION   ALPHA
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  DTRSM  solves one of the matrix equations
*
*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
*
*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
*
*     op( A ) = A   or   op( A ) = A'.
*
*  The matrix X is overwritten on B.
*
*  Parameters
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry, SIDE specifies whether op( A ) appears on the left
*           or right of X as follows:
*
*              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
*
*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix A is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n'   op( A ) = A.
*
*              TRANSA = 'T' or 't'   op( A ) = A'.
*
*              TRANSA = 'C' or 'c'   op( A ) = A'.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit triangular
*           as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of B. M must be at
*           least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of B.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
*           zero then  A is not referenced and  B need not be set before
*           entry.
*           Unchanged on exit.
*
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
*           upper triangular part of the array  A must contain the upper
*           triangular matrix  and the strictly lower triangular part of
*           A is not referenced.
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
*           lower triangular part of the array  A must contain the lower
*           triangular matrix  and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
*           A  are not referenced either,  but are assumed to be  unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
*           then LDA must be at least max( 1, n ).
*           Unchanged on exit.
*
*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
*           Before entry,  the leading  m by n part of the array  B must
*           contain  the  right-hand  side  matrix  B,  and  on exit  is
*           overwritten by the solution matrix  X.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     .. Local Scalars ..
      LOGICAL            LSIDE, NOUNIT, UPPER
      INTEGER            I, INFO, J, K, NROWA
      DOUBLE PRECISION   TEMP
*     .. Parameters ..
      DOUBLE PRECISION   ONE         , ZERO
      PARAMETER        ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      LSIDE  = LSAME( SIDE  , 'L' )
      IF( LSIDE )THEN
         NROWA = M
      ELSE
         NROWA = N
      END IF
      NOUNIT = LSAME( DIAG  , 'N' )
      UPPER  = LSAME( UPLO  , 'U' )
*
      INFO   = 0
      IF(      ( .NOT.LSIDE                ).AND.
     $         ( .NOT.LSAME( SIDE  , 'R' ) )      )THEN
         INFO = 1
      ELSE IF( ( .NOT.UPPER                ).AND.
     $         ( .NOT.LSAME( UPLO  , 'L' ) )      )THEN
         INFO = 2
      ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
     $         ( .NOT.LSAME( TRANSA, 'C' ) )      )THEN
         INFO = 3
      ELSE IF( ( .NOT.LSAME( DIAG  , 'U' ) ).AND.
     $         ( .NOT.LSAME( DIAG  , 'N' ) )      )THEN
         INFO = 4
      ELSE IF( M  .LT.0               )THEN
         INFO = 5
      ELSE IF( N  .LT.0               )THEN
         INFO = 6
      ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
         INFO = 9
      ELSE IF( LDB.LT.MAX( 1, M     ) )THEN
         INFO = 11
      END IF
      IF( INFO.NE.0 )THEN
         CALL XERBLA( 'DTRSM ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
*     And when  alpha.eq.zero.
*
      IF( ALPHA.EQ.ZERO )THEN
         DO 20, J = 1, N
            DO 10, I = 1, M
               B( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
         RETURN
      END IF
*
*     Start the operations.
*
      IF( LSIDE )THEN
         IF( LSAME( TRANSA, 'N' ) )THEN
*
*           Form  B := alpha*inv( A )*B.
*
            IF( UPPER )THEN
               DO 60, J = 1, N
                  IF( ALPHA.NE.ONE )THEN
                     DO 30, I = 1, M
                        B( I, J ) = ALPHA*B( I, J )
   30                CONTINUE
                  END IF
                  DO 50, K = M, 1, -1
                     IF( B( K, J ).NE.ZERO )THEN
                        IF( NOUNIT )
     $                     B( K, J ) = B( K, J )/A( K, K )
                        DO 40, I = 1, K - 1
                           B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
   40                   CONTINUE
                     END IF
   50             CONTINUE
   60          CONTINUE
            ELSE
               DO 100, J = 1, N
                  IF( ALPHA.NE.ONE )THEN
                     DO 70, I = 1, M
                        B( I, J ) = ALPHA*B( I, J )
   70                CONTINUE
                  END IF
                  DO 90 K = 1, M
                     IF( B( K, J ).NE.ZERO )THEN
                        IF( NOUNIT )
     $                     B( K, J ) = B( K, J )/A( K, K )
                        DO 80, I = K + 1, M
                           B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
   80                   CONTINUE
                     END IF
   90             CONTINUE
  100          CONTINUE
            END IF
         ELSE
*
*           Form  B := alpha*inv( A' )*B.
*
            IF( UPPER )THEN
               DO 130, J = 1, N
                  DO 120, I = 1, M
                     TEMP = ALPHA*B( I, J )
                     DO 110, K = 1, I - 1
                        TEMP = TEMP - A( K, I )*B( K, J )
  110                CONTINUE
                     IF( NOUNIT )
     $                  TEMP = TEMP/A( I, I )
                     B( I, J ) = TEMP
  120             CONTINUE
  130          CONTINUE
            ELSE
               DO 160, J = 1, N
                  DO 150, I = M, 1, -1
                     TEMP = ALPHA*B( I, J )
                     DO 140, K = I + 1, M
                        TEMP = TEMP - A( K, I )*B( K, J )
  140                CONTINUE
                     IF( NOUNIT )
     $                  TEMP = TEMP/A( I, I )
                     B( I, J ) = TEMP
  150             CONTINUE
  160          CONTINUE
            END IF
         END IF
      ELSE
         IF( LSAME( TRANSA, 'N' ) )THEN
*
*           Form  B := alpha*B*inv( A ).
*
            IF( UPPER )THEN
               DO 210, J = 1, N
                  IF( ALPHA.NE.ONE )THEN
                     DO 170, I = 1, M
                        B( I, J ) = ALPHA*B( I, J )
  170                CONTINUE
                  END IF
                  DO 190, K = 1, J - 1
                     IF( A( K, J ).NE.ZERO )THEN
                        DO 180, I = 1, M
                           B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  180                   CONTINUE
                     END IF
  190             CONTINUE
                  IF( NOUNIT )THEN
                     TEMP = ONE/A( J, J )
                     DO 200, I = 1, M
                        B( I, J ) = TEMP*B( I, J )
  200                CONTINUE
                  END IF
  210          CONTINUE
            ELSE
               DO 260, J = N, 1, -1
                  IF( ALPHA.NE.ONE )THEN
                     DO 220, I = 1, M
                        B( I, J ) = ALPHA*B( I, J )
  220                CONTINUE
                  END IF
                  DO 240, K = J + 1, N
                     IF( A( K, J ).NE.ZERO )THEN
                        DO 230, I = 1, M
                           B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  230                   CONTINUE
                     END IF
  240             CONTINUE
                  IF( NOUNIT )THEN
                     TEMP = ONE/A( J, J )
                     DO 250, I = 1, M
                       B( I, J ) = TEMP*B( I, J )
  250                CONTINUE
                  END IF
  260          CONTINUE
            END IF
         ELSE
*
*           Form  B := alpha*B*inv( A' ).
*
            IF( UPPER )THEN
               DO 310, K = N, 1, -1
                  IF( NOUNIT )THEN
                     TEMP = ONE/A( K, K )
                     DO 270, I = 1, M
                        B( I, K ) = TEMP*B( I, K )
  270                CONTINUE
                  END IF
                  DO 290, J = 1, K - 1
                     IF( A( J, K ).NE.ZERO )THEN
                        TEMP = A( J, K )
                        DO 280, I = 1, M
                           B( I, J ) = B( I, J ) - TEMP*B( I, K )
  280                   CONTINUE
                     END IF
  290             CONTINUE
                  IF( ALPHA.NE.ONE )THEN
                     DO 300, I = 1, M
                        B( I, K ) = ALPHA*B( I, K )
  300                CONTINUE
                  END IF
  310          CONTINUE
            ELSE
               DO 360, K = 1, N
                  IF( NOUNIT )THEN
                     TEMP = ONE/A( K, K )
                     DO 320, I = 1, M
                        B( I, K ) = TEMP*B( I, K )
  320                CONTINUE
                  END IF
                  DO 340, J = K + 1, N
                     IF( A( J, K ).NE.ZERO )THEN
                        TEMP = A( J, K )
                        DO 330, I = 1, M
                           B( I, J ) = B( I, J ) - TEMP*B( I, K )
  330                   CONTINUE
                     END IF
  340             CONTINUE
                  IF( ALPHA.NE.ONE )THEN
                     DO 350, I = 1, M
                        B( I, K ) = ALPHA*B( I, K )
  350                CONTINUE
                  END IF
  360          CONTINUE
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of DTRSM .
*
      END