LAPACK Working Note 81
Quick Installation Guide for LAPACK on Unix SystemsEl

Authors and Jack Dongarra
Department of Computer Science
University of Tennessee
Knoxville, Tennessee 37996-1301

REVISED: VERSION 3.1.1, February 2007
Abstract

This working note describes how to install, and test version 3.1.1 of LAPACK, a linear
algebra package for high-performance computers, on a Unix System. The timing routines
are not actually included in release 3.1.1, and that part of the LAWN refers to release 3.0.
Non-Unix installation instructions and further details of the testing and timing suites are
only contained in LAPACK Working Note 41, and not in this abbreviated version.

IThis work was supported by NSF Grant No. ASC-8715728 and NSF Grant No. 0444486



Contents

13 File Formafl . . « © o v oo e
U Overview of Tape Contentd . . . . . . o oo v e

U2 Level 1.2 and 3 BLAS . . . . . . . . .

13 LAPACK Test Routimed . . . . . .o vvvi .

U4 LAPACK Timing Routines (for LAPACK 3.0 and before)l . . . . . .

[ IS BES BRI Mo i NN

b1 Untar the Fild . ...

5.2 Copyv and edit the file LAPACK/make.inc.example to LAPACK/make ind 8
5.3 Edit the file LAPACK/Makefild . . . . . .o oo vot oot 9
6 Further Details of the Installation Procesd . . . . . . .. .. ... ... .. 10
6.1 Test and Install the Machine-Dependent Routines) . . . . . . . ... 10
611 Installing LSAMBE . . . . . ... 10
612 Tnstalling SLAMCH and DLAMCH . . . ... ....... 11
613  Tnstalling SRECOND and DSECND . . . . ... . ... ... 12

6.4 Testing IRRE arithmetic and ILAENM . . . .. ... . .. 13
6.2 Create the BLAS Libraryl . . . o o v v oo o 14

6.3  Run the BLAS Test Emg;g%sl ..................... 14
6.4 Create the LAPACK Tabrard . .« v v v v o oo e e e 15

6.5 Create the Test Matrix Generator Library . . . . . . . .. ... ... 15

6.6 Run the LTAPACK Test ngna.mﬂ ................... 15
[6.6.1 Testing the Linear Equations Routined . . . . . . . .. .. 15
(6.6.2 Testing_th_e_]ﬂi_gensvstem Routined . . .. .. .. ... ... 16

6.7 Run the LAPACK Timing Programs (For LAPACK 3.0 and befare) 17
16.7.1 Timing the Linear Equations Routined . . . . . . . . . . . 18
6.7.2 Timing the BLAS . . . . . . . . . . ... 19
l6.7.3 Timing_th_e_]ﬁgensvstem Routined . . .. ... .. ... .. 19
6.8 Send the Results to Tennessed . . . . ... .............. 21
6.9  Getsupporfl . . . . .. ... 21

[A_Caveatd 22




6 ODEIMIZALION .« « « o o v o e 24
z Fomniling_tﬂsimg,ﬁjmillg_dﬁmrd ........................ 24
R TEEE arithmetid . . . . . . ..ot 24
IMING PIOGTAINS - -+« « « v v v e e e e e e e e e e e e e e 25
...................................... 26



1 Introduction

LAPACK is a linear algebra library for high-performance computers. The library in-
cludes Fortran 77 subroutines for the analysis and solution of systems of simultaneous linear
algebraic equations, linear least-squares problems, and matrix eigenvalue problems. Our ap-
proach to achieving high efficiency is based on the use of a standard set of Basic Linear
Algebra Subprograms (the BLAS), which can be optimized for each computing environ-
ment. By confining most of the computational work to the BLAS, the subroutines should
be transportable and efficient across a wide range of computers.

This working note describes how to install, test, and time this release of LAPACK on a
Unix System.

The instructions for installing, testing, and timingﬁ are designed for a person whose
responsibility is the maintenance of a mathematical software library. We assume the installer
has experience in compiling and running Fortran programs and in creating object libraries.
The installation process involves untarring the file, creating a set of libraries, and compiling
and running the test and timing programs 2.

Section Bl describes how the files are organized in the file, and Section H] gives a general
overview of the parts of the test package. Step-by-step instructions appear in Section Bl

For users desiring additional information, please refer to LAPACK Working Note 41.
Appendix [Al entitled “Caveats”, is a compendium of the known problems from our own
experiences, with suggestions on how to overcome them.

It is strongly advised that the user read Appendix A before proceeding with
the installation process.

2 Revisions Since the First Public Release

Since its first public release in February, 1992, LAPACK has had several updates, which
have encompassed the introduction of new routines as well as extending the functionality
of existing routines. The first update, June 30, 1992, was version 1.0a; the second update,
October 31, 1992, was version 1.0b; the third update, March 31, 1993, was version 1.1;
version 2.0 on September 30, 1994, coincided with the release of the Second Edition of the
LAPACK Users’ Guide; version 3.0 on June 30, 1999 coincided with the release of the Third
Edition of the LAPACK Users’ Guide; version 3.1 was released on November, 2006. and
finally version 3.1.1 was released on November, 2007.

All LAPACK routines reflect the current version number with the date on the routine
indicating when it was last modified. For more information on revisions in the latest release,
please refer to the revisions.info file in the lapack directory on netlib.

http://www.netlib.org/lapack/revisions.info

3 File Format

The software for LAPACK is distributed in the form of a gzipped tar file (via anonymous
ftp or the World Wide Web), which contains the Fortran source for LAPACK, the Basic

2timing are only provided in LAPACK 3.0 and before



http://www.netlib.org/lapack/revisions.info

LAPACK

INSTALL BLAS SRC TESTING TIMING
Machine depen- LAPACK routines
dent routines & auxiliary routines
SRC TESTING LIN MATGEN EIG LIN EIG
Level 1BLAS BLAS2& 3test Linear egn. Test matrix Eigensystem Linear egn. Eigensystem
Level 2BLAS routines test routines generators test routines  timing routines  timing routines
Level 3BLAS

Figure 1: Unix organization of LAPACK 3.0

Linear Algebra Subprograms (the Level 1, 2, and 3 BLAS) needed by LAPACK, the testing
programs, and the timing programs?. Users who wish to have a non-Unix installation should
refer to LAPACK Working Note 41, although the overview in section Bl applies to both the
Unix and non-Unix versions.

The package may be accessed via the World Wide Web through the URL address:

http://www.netlib.org/lapack/lapack.tgz

Or, you can retrieve the file via anonymous ftp at netlib:

ftp ftp.netlib.org

login: anonymous

password: <your email address>
cd lapack

binary

get lapack.tgz

quit

The software in the tar file is organized in a number of essential directories as shown
in Figure 1. Please note that this figure does not reflect everything that is contained
in the LAPACK directory. Input and instructional files are also located at various levels.
Libraries are created in the LAPACK directory and executable files are created in one of
the directories BLAS, TESTING, or TIMING?. Input files for the test and timing? programs
are also found in these three directories so that testing may be carried out in the directories
LAPACK/BLAS, LAPACK/TESTING, and LAPACK/TIMING 2. A top-level makefile in
the LAPACK directory is provided to perform the entire installation procedure.


http://www.netlib.org/lapack/lapack.tgz

4 Overview of Tape Contents

Most routines in LAPACK occur in four versions: REAL, DOUBLE PRECISION,
COMPLEX, and COMPLEX*16. The first three versions (REAL, DOUBLE PRECISION,
and COMPLEX) are written in standard Fortran 77 and are completely portable; the
COMPLEX*16 version is provided for those compilers which allow this data type. For
convenience, we often refer to routines by their single precision names; the leading ‘S’ can
be replaced by a ‘D’ for double precision, a ‘C’ for complex, or a ‘Z’ for complex*16. For
LAPACK use and testing you must decide which version(s) of the package you intend to
install at your site (for example, REAL and COMPLEX on a Cray computer or DOUBLE
PRECISION and COMPLEX*16 on an IBM computer).

4.1 LAPACK Routines

There are three classes of LAPACK routines:

e driver routines solve a complete problem, such as solving a system of linear equations
or computing the eigenvalues of a real symmetric matrix. Users are encouraged to use
a driver routine if there is one that meets their requirements. The driver routines are
listed in LAPACK Working Note 41 [3] and the LAPACK Users’ Guide [I].

e computational routines, also called simply LAPACK routines, perform a distinct
computational task, such as computing the LU decomposition of an m-by-n matrix
or finding the eigenvalues and eigenvectors of a symmetric tridiagonal matrix using
the QR algorithm. The LAPACK routines are listed in LAPACK Working Note 41 [3]
and the LAPACK Users’ Guide [1].

e auxiliary routines are all the other subroutines called by the driver routines and
computational routines. The auxiliary routines are listed in LAPACK Working Note
41 B] and the LAPACK Users’ Guide [1J.

4.2 Level 1, 2, and 3 BLAS

The BLAS are a set of Basic Linear Algebra Subprograms that perform vector-vector,
matrix-vector, and matrix-matrix operations. LAPACK is designed around the Level 1,
2, and 3 BLAS, and nearly all of the parallelism in the LAPACK routines is contained in
the BLAS. Therefore, the key to getting good performance from LAPACK lies in having
an efficient version of the BLAS optimized for your particular machine. Optimized BLAS
libraries are available on a variety of architectures, refer to the BLAS FAQ on netlib for
further information.

http://www.netlib.org/blas/faq.html

There are also freely available BLAS generators that automatically tune a subset of the
BLAS for a given architecture. E.g.,

http://www.netlib.org/atlas/


http://www.netlib.org/blas/faq.html
http://www.netlib.org/atlas/

And, if all else fails, there is the Fortran 77 reference implementation of the Level 1, 2, and
3 BLAS available on netlib (also included in the LAPACK distribution tar file).

http://www.netlib.org/blas/blas.tgz

No matter which BLAS library is used, the BLAS test programs should always be run.
Users should not expect too much from the Fortran 77 reference implementation BLAS;
these versions were written to define the basic operations and do not employ the standard
tricks for optimizing Fortran code.
The formal definitions of the Level 1, 2, and 3 BLAS are in [T0], [§], and [6]. The BLAS
Quick Reference card is available on netlib.

4.3 LAPACK Test Routines

This release contains two distinct test programs for LAPACK routines in each data
type. One test program tests the routines for solving linear equations and linear least
squares problems, and the other tests routines for the matrix eigenvalue problem. The
routines for generating test matrices are used by both test programs and are compiled into
a library for use by both test programs.

4.4 LAPACK Timing Routines (for LAPACK 3.0 and before)

This release also contains two distinct timing programs for the LAPACK routines in
each data type. The linear equation timing program gathers performance data in megaflops
on the factor, solve, and inverse routines for solving linear systems, the routines to generate
or apply an orthogonal matrix given as a sequence of elementary transformations, and the
reductions to bidiagonal, tridiagonal, or Hessenberg form for eigenvalue computations. The
operation counts used in computing the megaflop rates are computed from a formula; see
LAPACK Working Note 41 [3]. The eigenvalue timing program is used with the eigensystem
routines and returns the execution time, number of floating point operations, and megaflop
rate for each of the requested subroutines. In this program, the number of operations is
computed while the code is executing using special instrumented versions of the LAPACK
subroutines.

5 Installing LAPACK on a Unix System

Installing, testing, and timing? the Unix version of LAPACK involves the following
steps:

1. Gunzip and tar the file.
2. Copy and edit the file LAPACK/make.inc.example to LAPACK/make.inc.

3. Edit the file LAPACK/Makefile and type make.


http://www.netlib.org/blas/blas.tgz

5.1 Untar the File

If you received a tar file of LAPACK via the World Wide Web or anonymous ftp, enter
the following command:

gunzip -c lapack.tgz | tar xvf -
This will create a top-level directory called LAPACK, which requires approximately 34 Mbytes
of disk space. The total space requirements including the object files and executables is
approximately 100 Mbytes for all four data types.

5.2 Copy and edit the file LAPACK/make.inc.example to LAPACK/make.inc

Before the libraries can be built, or the testing and timing? programs run, you must
define all machine-specific parameters for the architecture to which you are installing LA-
PACK. All machine-specific parameters are contained in the file LAPACK/make.inc. An ex-
ample of LAPACK/make . inc for a LINUX machine with GNU compilers is given in LAPACK/make . inc . example,
copy that file to LAPACK /make.inc by entering the following command:

cp LAPACK/make.inc.example LAPACK/make.inc
Now modify your LAPACK/make . inc by applying the following recommendations. The first
line of this make.inc file is:

SHELL = /bin/sh

and it will need to be modified to SHELL = /sbin/sh if you are installing LAPACK on an
SGI architecture. Second, you will need to modify the PLAT definition, which is appended
to all library names, to specify the architecture to which you are installing LAPACK. This
features avoids confusion in library names when you are installing LAPACK on more than
one architecture. Next, you will need to modify FORTRAN, OPTS, DRVOPTS, NOOPT, LOADER,
and LOADOPTS to specify the compiler, compiler options, compiler options for the testing
and timing? main programs, loader, loader options. Next you will have to choose which
function you will use to time in the SECOND and DSECND routines.

#The Default : SECOND and DSECND will use a call to the EXTERNAL FUNCTION ETIME
TIMER = EXT_ETIME

# For RS6K : SECOND and DSECND will use a call to the EXTERNAL FUNCTION ETIME_

# TIMER = EXT_ETIME_

# For gfortran compiler: SECOND and DSECND will use the INTERNAL FUNCTION ETIME

# TIMER = INT_ETIME

# If your Fortran compiler does not provide etime (like Nag Fortran Compiler, etc...)
# SECOND and DSECND will use a call to the INTERNAL FUNCTION CPU_TIME

# TIMER = INT_CPU_TIME

# If neither of this works...you can use the NONE value...

# In that case, SECOND and DSECND will always return O

# TIMER = NONE

Refer to the section to get more information.
Next, you will need to modify ARCH, ARCHFLAGS, and RANLIB to specify archiver, archiver
options, and ranlib for your machine. If your architecture does not require ranlib to be



run after each archive command (as is the case with CRAY computers running UNICOS,
Hewlett Packard computers running HP-UX, or SUN SPARCstations running Solaris), set
ranlib=echo. And finally, you must modify the BLASLIB definition to specify the BLAS
library to which you will be linking. If an optimized version of the BLAS is available on
your machine, you are highly recommended to link to that library. Otherwise, by default,
BLASLIB is set to the Fortran 77 version.

NOTE: Example make.inc include files are contained in the LAPACK/INSTALL di-
rectory. Please refer to Appendix [A] for machine-specific installation hints, and/or the
release notes file on netlib.

http://www.netlib.org/lapack/release notes

5.3 Edit the file LAPACK/Makefile

This Makefile can be modified to perform as much of the installation process as the user
desires. Ideally, this is the ONLY makefile the user must modify. However, modification
of lower-level makefiles may be necessary if a specific routine needs to be compiled with a
different level of optimization.

First, edit the definitions of blaslib, lapacklib, tmglib, lapack_testing, and timing?
in the file LAPACK/Makefile to specify the data types desired. For example, if you only
wish to compile the single precision real version of the LAPACK library, you would modify
the lapacklib definition to be:

lapacklib:
( cd SRC; $(MAKE) single )

Likewise, you could specify double, complex, or complex16 to build the double pre-
cision real, single precision complex, or double precision complex libraries, respectively. By
default, the presence of no arguments following the make command will result in the build-
ing of all four data types. The make command can be run more than once to add another
data type to the library if necessary.

Next, if you will be using a locally available BLAS library, you will need to remove
blaslib from the 1ib definition. And finally, if you do not wish to build all of the libraries
individually and likewise run all of the testing and timing separately, you can modify the
all definition to specify the amount of the installation process that you want performed.
By default, the all definition is set to

all: lapack_install 1ib lapack_testing blas_testing

which will perform all phases of the installation process — testing of machine-dependent
routines, building the libraries, BLAS testing and LAPACK testing.

The entire installation process will then be performed by typing make.

Questions and/or comments can be directed to the authors as described in Section
If test failures occur, please refer to the appropriate subsection in Section

If disk space is limited, we suggest building each data type separately and/or deleting
all object files after building the libraries. Likewise, all testing and timing executables can


http://www.netlib.org/lapack/release_notes

be deleted after the testing and timing process is completed. The removal of all object files
and executables can be accomplished by the following:

cd LAPACK

make clean

6 Further Details of the Installation Process

Alternatively, you can choose to run each of the phases of the installation process sepa-
rately. The following sections give details on how this may be achieved.

6.1 Test and Install the Machine-Dependent Routines.

There are six machine-dependent functions in the test and timing package, at least three
of which must be installed. They are

LSAME  LOGICAL Test if two characters are the same regardless of case

SLAMCH REAL Determine machine-dependent parameters

DLAMCH DOUBLE PRECISION Determine machine-dependent parameters

SECOND REAL Return time in seconds from a fixed starting time

DSECND DOUBLE PRECISION Return time in seconds from a fixed starting time

ILAENV INTEGER Checks that NaN and infinity arithmetic are IEEE-754 compliant

If you are working only in single precision, you do not need to install DLAMCH and
DSECND, and if you are working only in double precision, you do not need to install
SLAMCH and SECOND.

These six subroutines are provided in LAPACK/INSTALL, along with six test programs. To
compile the six test programs and run the tests, go to LAPACK and type make lapack install.
The test programs are called testlsame, testslamch, testdlamch, testsecond, testdsecnd
and testieee. If you do not wish to run all tests, you will need to modify the lapack_install
definition in the LAPACK/Makefile to only include the tests you wish to run. Otherwise,
all tests will be performed. The expected results of each test program are described below.

6.1.1 Installing LSAME

LSAME is a logical function with two character parameters, A and B. It returns .TRUE.
if A and B are the same regardless of case, or .FALSE. if they are different. For example,
the expression

LSAME( UPLO, U’ )

is equivalent to

( UPLO.EQ.’U’ ).0OR.( UPLD.EQ.’u’ )

10



The test program in 1sametst.f tests all combinations of the same character in upper
and lower case for A and B, and two cases where A and B are different characters.

Run the test program by typing testlsame. If LSAME works correctly, the only message
you should see after the execution of testlsame is

ASCII character set
Tests completed

The file 1same.f is automatically copied to LAPACK/BLAS/SRC/ and LAPACK/SRC/. The
function LSAME is needed by both the BLAS and LAPACK, so it is safer to have it in
both libraries as long as this does not cause trouble in the link phase when both libraries
are used.

6.1.2 Installing SLAMCH and DLAMCH

SLAMCH and DLAMCH are real functions with a single character parameter that
indicates the machine parameter to be returned. The test program in slamchtst.f simply
prints out the different values computed by SLAMCH, so you need to know something

about what the values should be. For example, the output of the test program executable
testslamch for SLAMCH on a Sun SPARCstation is

Epsilon = 5.96046E-08
Safe minimum = 1.17549E-38
Base = 2.00000
Precision = 1.19209E-07
Number of digits in mantissa = 24.0000
Rounding mode = 1.00000
Minimum exponent = -125.000
Underflow threshold = 1.17549E-38
Largest exponent = 128.000
Overflow threshold = 3.40282E+38
Reciprocal of safe minimum = 8.50706E+37

On a Cray machine, the safe minimum underflows its output representation and the overflow
threshold overflows its output representation, so the safe minimum is printed as 0.00000
and overflow is printed as R. This is normal. If you would prefer to print a representable
number, you can modify the test program to print SEMIN*100. and RMAX/100. for the
safe minimum and overflow thresholds.

Likewise, the test executable testdlamch is run for DLAMCH.

If both tests were successful, go to Section

If SLAMCH (or DLAMCH) returns an invalid value, you will have to create your own
version of this function. The following options are used in LAPACK and must be set:

‘B’: Base of the machine
‘E’: Epsilon (relative machine precision)

‘O’: Overflow threshold

11



‘P’: Precision = Epsilon*Base
‘S’ Safe minimum (often same as underflow threshold)

‘U’: Underflow threshold

Some people may be familiar with RIMACH (D1IMACH), a primitive routine for set-
ting machine parameters in which the user must comment out the appropriate assignment

statements for the target machine. If a version of RIMACH is on hand, the assignments in
SLAMCH can be made to refer to RIMACH using the correspondence

SLAMCH( ‘U’ RIMACH( 1

SLAMCH( ‘E’ RIMACH( 3

(‘U) (1)
SLAMCH( ‘O’ ) = RIMACH( 2)
(‘E") (3)
SLAMCH( ‘B’ ) (5)

RIMACH( 5

The safe minimum returned by SLAMCH( ’S’ ) is initially set to the underflow value, but
if 1/(overflow) > (underflow) it is recomputed as (1/(overflow)) % (1 + ¢), where ¢ is the
machine precision.

BE AWARE that the initial call to SLAMCH or DLAMCH is expensive. We suggest
that installers run it once, save the results, and hard-code the constants in the version they
put in their library.

6.1.3 Installing SECOND and DSECND

Both the timing routines? and the test routines call SECOND (DSECND), a real func-
tion with no arguments that returns the time in seconds from some fixed starting time. Our
version of this routine returns only “user time”, and not “user time + system time”. The
following version of SECOND in second EXT ETIME.f, second INT ETIME.f calls ETIME,
a Fortran library routine available on some computer systems. If ETIME is not available
or a better local timing function exists, you will have to provide the correct interface to
SECOND and DSECND on your machine.

Since LAPACK 3.1.1 we provide 5 different flavours of the SECOND and DSECND
routines. The version that will be used depends on the value of the TIMER variable in the
make.inc

e If ETIME is available as an external function, set the value of the TIMER, variable
in your make.inc to EXT_ETIME:second EXT_ETIME.f and dsecnd EXT ETIME.f will be
used. Usually on HPPA architectures, the compiler and loader flag +U77 should be
included to access the function ETIME.

e If ETIMEL is available as an external function, set the value of the TIMER variable
in your make.inc to EXT_ETIME :second EXT ETIME_.f and dsecnd EXT ETIME_.f will
be used. It is the case on some IBM architectures such as IBM RS/6000s.

12



e If ETIME is available as an internal function, set the value of the TIMER variable
in your make.inc to INT_ETIME:second INT_ETIME.f and dsecnd INT ETIME.f will be
used. This is the case with gfortan.

e If CPU_TIME is available as an internal function, set the value of the TIMER, variable
in your make.inc to INT_CPU_TIME:second INT _CPU_TIME.f and dsecnd INT_CPU_TIME.f
will be used.

e If none of these function is available, set the value of the TIMER variable in your
make.inc to NONE:second NONE.f and dsecnd NONE.f will be used. These routines
will always return zero.

The test program in secondtst.f performs a million operations using 5000 iterations of
the SAXPY operation y := y + ax on a vector of length 100. The total time and megaflops
for this test is reported, then the operation is repeated including a call to SECOND on each
of the 5000 iterations to determine the overhead due to calling SECOND. The test program
executable is called testsecond (or testdsecnd). There is no single right answer, but the
times in seconds should be positive and the megaflop ratios should be appropriate for your
machine.

6.1.4 Testing IEEE arithmetic and ILAENV

As some new routines in LAPACK rely on IEEE-754 compliance, two settings (ISPEC=10
and ISPEC=11) have been added to ILAENV (LAPACK/SRC/ilaenv.f) to denote IEEE-754
compliance for NaN and infinity arithmetic, respectively. By default, ILAENV assumes an
IEEE machine, and does a test for IEEE-754 compliance. NOTE: If you are installing
LAPACK on a non-IEEE machine, you MUST modify ILAENYV, as this test
inside ILAENYV will crash!

If ILAENV( 10, ... ) or ILAENV( 11, ... ) is issued, then ILAENV=1 is returned to
signal IEEE-754 compliance, and ILAENV=0 if the architecture is non-IEEE-754 compliant.

Thus, for non-IEEE machines, the user must hard-code the setting of (ILAENV=0) for
(ISPEC=10 and ISPEC=11) in the version of LAPACK/SRC/ilaenv.f to be put in his library.
There are also specialized testing and timing? versions of ILAENV that will also need to
be modified.

e Testing/timing version of LAPACK/TESTING/LIN/ilaenv.f
e Testing/timing version of LAPACK/TESTING/EIG/ilaenv.f
e Testing/timing version of LAPACK/TIMING/LIN/ilaenv.f
e Testing/timing version of LAPACK/TIMING/EIG/ilaenv.f

The test program in LAPACK/INSTALL/tstiee.f checks an installation architecture to
see if infinity arithmetic and NaN arithmetic are IEEE-754 compliant. A warning message
to the user is printed if non-compliance is detected. This same test is performed inside the
function ILAENV. If ILAENV( 10, ... ) or ILAENV( 11, ... ) isissued, then ILAENV=1 is

13



returned to signal IEEE-754 compliance, and ILAENV=0 if the architecture is non-IEEE-754
compliant.

To avoid this IEEE test being run every time you call ILAENV( 10, ...) or ILAENV(
11, ... ), we suggest that the user hard-code the setting of ILAENV=1 or ILAENV=0 in the
version of LAPACK/SRC/ilaenv.f to be put in his library. As aforementioned, there are also
specialized testing and timing? versions of ILAENV that will also need to be modified.

6.2 Create the BLAS Library

Ideally, a highly optimized version of the BLAS library already exists on your machine.
In this case you can go directly to Section to make the BLAS test programs.

a) Go to LAPACK and edit the definition of blaslib in the file Makefile to specify the
data types desired, as in the example in Section

If you already have some of the BLAS, you will need to edit the file LAPACK/BLAS/SRC/Makefile
to comment out the lines defining the BLAS you have.

b) Type make blaslib. The make command can be run more than once to add another
data type to the library if necessary.

The BLAS library is created in LAPACK/blas PLAT.a, where PLAT is the user-defined archi-
tecture suffix specified in the file LAPACK/make. inc.

6.3 Run the BLAS Test Programs

Test programs for the Level 1, 2, and 3 BLAS are in the directory LAPACK/BLAS/TESTING.

To compile and run the Level 1, 2, and 3 BLAS test programs, go to LAPACK and
type make blas testing. The executable files are called xblat_s, xblat_d, xblat_c, and
xblat_z, where the _ (underscore) is replaced by 1, 2, or 3, depending upon the level of
BLAS that it is testing. All executable and output files are created in LAPACK/BLAS/. For
the Level 1 BLAS tests, the output file names are sblatl.out, dblatl.out, cblatl.out,
and zblatl.out. For the Level 2 and 3 BLAS, the name of the output file is indicated
on the first line of the input file and is currently defined to be sblat2.out for the Level 2
REAL version, and sblat3.out for the Level 3 REAL version, with similar names for the
other data types.

If the tests using the supplied data files were completed successfully, consider whether
the tests were sufficiently thorough. For example, on a machine with vector registers, at
least one value of IV greater than the length of the vector registers should be used; otherwise,
important parts of the compiled code may not be exercised by the tests. If the tests were
not successful, either because the program did not finish or the test ratios did not pass
the threshold, you will probably have to find and correct the problem before continuing. If
you have been testing a system-specific BLAS library, try using the Fortran BLAS for the
routines that did not pass the tests. For more details on the BLAS test programs, see [0]
and [7].

14



6.4 Create the LAPACK Library

a) Go to the directory LAPACK and edit the definition of lapacklib in the file Makefile
to specify the data types desired, as in the example in Section

b) Type make lapacklib. The make command can be run more than once to add
another data type to the library if necessary.

The LAPACK library is created in LAPACK/lapack PLAT.a, where PLAT is the user-defined
architecture suffix specified in the file LAPACK/make. inc.

6.5 Create the Test Matrix Generator Library

a) Go to the directory LAPACK and edit the definition of tmglib in the file Makefile to
specify the data types desired, as in the example in Section

b) Type make tmglib. The make command can be run more than once to add another
data type to the library if necessary.

The test matrix generator library is created in LAPACK/tmglib PLAT.a, where PLAT is the
user-defined architecture suffix specified in the file LAPACK/make. inc.

6.6 Run the LAPACK Test Programs

There are two distinct test programs for LAPACK routines in each data type, one for
the linear equation routines and one for the eigensystem routines. In each data type, there
is one input file for testing the linear equation routines and eighteen input files for testing
the eigenvalue routines. The input files reside in LAPACK/TESTING. For more information
on the test programs and how to modify the input files, please refer to LAPACK Working
Note 41 [3].

If you do not wish to run each of the tests individually, you can go to LAPACK, edit the
definition lapack_testing in the file Makefile to specify the data types desired, and type
make lapack testing. This will compile and run the tests as described in sections
and

6.6.1 Testing the Linear Equations Routines

a) Go to LAPACK/TESTING/LIN and type make followed by the data types desired. The
executable files are called xlintsts, xlintstc, xlintstd, or xlintstz and are
created in LAPACK/TESTING.

b) Go to LAPACK/TESTING and run the tests for each data type. For the REAL version,
the command is

xlintsts < stest.in > stest.out

The tests using xlintstd, xlintstc, and xlintstz are similar with the leading ‘s’
in the input and output file names replaced by ‘d’, ‘c’, or ‘z’.

If you encountered failures in this phase of the testing process, please refer to Section

15



6.6.2 Testing the Eigensystem Routines

a) Go to LAPACK/TESTING/EIG and type make followed by the data types desired. The
executable files are called xeigtsts, xeigtstc, xeigtstd, and xeigtstz and are
created in LAPACK/TESTING.

b) Go to LAPACK/TESTING and run the tests for each data type. The tests for the eigen-
system routines use eighteen separate input files for testing the nonsymmetric eigen-
value problem, the symmetric eigenvalue problem, the banded symmetric eigenvalue
problem, the generalized symmetric eigenvalue problem, the generalized nonsymmet-
ric eigenvalue problem, the singular value decomposition, the banded singular value
decomposition, the generalized singular value decomposition, the generalized QR and
RQ factorizations, the generalized linear regression model, and the constrained linear
least squares problem. The tests for the REAL version are as follows:

xeigtsts < nep.in > snep.out
xeigtsts < sep.in > ssep.out
xeigtsts < svd.in > ssvd.out

xeigtsts sec.in > sec.out

xeigtsts 