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Introduction

Java package for Markov Decision Process Package (JMDP) is an object oriented framework de-
signed to model dynamic programming problems (DP) and Markov Decision Processes (MDPs).
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1 Java and Object Oriented Programming

Java is a publicly available language developed by Sun Microsystems. The main characteristics
that Sun intended to have in Java are:

• Object-Oriented.

• Robust.

• Secure.

• Architecture Neutral

• Portable

• High Performance

• Interpreted

• Threaded

• Dynamic

Object Oriented Programming (OOP) is not a new idea. However it has not have an increased
development until recently. OOP is based on four key principles:

• abstraction.

• encapsulation

• inheritance

• polymorphism

An excellent explanation of OOP and the Java programming language can be found in [7].
The abstraction capability is the one that interests us most. Java allows us to define abstract

types like Actions, States, etc. We also define abstract functions like immediateCost(). We can program
the algorithm in terms of this abstract objects and functions, creating a flexible tool. This tool
can be used to define and solve DP problems. All the user has to do is to implement the abstract
functions. What it is particularly nice is that if a function is declared as abstract, then the compiler
itself will require the user to implement it before attempting to run the model.

2 Markov Decision Process - The Mathematical Model

The general problems that can be modeled and solved with the present framework can be classified
in finite or infinite horizon problems. In any of these cases, the problem can be deterministic or
stochastic. See Figure 1.

The deterministic problems are known as Dynamic Programming problems, and the stochastic
problems are commonly called MDPs.
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Figure 1: Taxonomy for MDP problems. WARNNING: “rewards” need to be changed to “costs”.

2.1 Finite Horizon Problems

We will show how a Markov Decision Process is built. Consider a discrete space, discrete time,
bivariate random process {(Xt, At), t = 0, 1, . . . , T}. Each of the Xt ∈ St represents the state of
the system at stage t, and each At ∈ At is the action taken at that stage. The quantity T < ∞
is called the horizon of the problem. The sets St and At are called the space state and the action
space, respectively, and represent the states and actions available at stage t; we will assume that
both are finite. The dynamics of the system are defined by two elements. First, we assume the
system has the following Markov property

P{Xt+1 = j|Xt = i, At = a}
= P{Xt+1 = j|Xt = i, At = a,Xt−1 = it−1, At−1 = at−1, . . . , X0 = i0}.

We call pijt(a) = P{Xt+1 = j|Xt = i, At = a} the transition probabilities. Next, actions are taken
when a state is realized. In general the action taken depends on the history of the process up to
time t, i.e. Ht = (X0, A0, X1, A1, . . . , Xt−1, At−1, Xt). A decision rule is a function πt that given
a history realization assign a probability distributions over the set A. A sequence of decision rules
π = (π0, π1, . . . , πT ) is called a policy . We call Π is the set of all policies. A policy is called Markov
if given Xt all previous history becomes irrelevant, that is

Pπ{At = a|Xt = i, At−1 = at−1, Xt−1 = it−1, . . .} = Pπ{At = a|Xt = i},

where we use Pπ{·} to denote the probability measure (on events defined by (Xt, At)) induced by
π. A Markov policy is called stationary if for all t = 0, 1, . . ., and all i ∈ S and a ∈ A,

Pπ{At = a|Xt = i} = Pπ{A0 = a|X0 = i}.

Notice that a stationary policy is completely determined by a single decision rule, and we have
π = (π0, π0, π0, . . .). A Markov policy is called deterministic if there is a function ft(i) ∈ A such
that

P{At = a|Xt = i} =

{
1 if a = ft(i)

0 otherwise.

Whenever action a taken from state i at stage t, a finite cost ct(i, a) is incurred. Consequently it
is possible to define a total expected cost vπt (i) obtained from time t to the final stage T following
policy π; this is called the value function

vπt (i) = Eπ

[
T∑
s=t

cs(Xs, As)
∣∣∣Xt = i

]
, i ∈ S0 (1)

3



where Eπ is the expectation operator following the probability distribution associated with policy
π. The problem is to find the policy π ∈ Π, that maximizes the objective function shown above.

v∗t (i) = inf
π∈Π

vπt (i).

Such optimal value function can be shown to satisfy Bellman’s optimality equation

v∗t (i) = min
a∈At(i)

{
ct(i, a) +

∑
j∈St(i,a)

pijt(a)v∗t+1(j)

}
, i ∈ S, t = 0, 1, . . . , T − 1. (2)

where At(i) is the set of feasible actions that can be taken from state i at stage t and St(i, a) is the
set of reachable states from state i taking action a at stage t. Observe that equation (2) implies an
algorithm to solve the optimal value function, and consequently the optimal policy. It starts from
some final values of vT (i) and solves backward the optimal decisions for the other stages. Since
the action space At is finite, the Bellman equation shows that it is possible to find a deterministic
decision rule ft(i) (and hence a deterministic policy) that is optimal, by choosing in every stage in
every state the action that maximizes the right hand side (breaking ties arbitrarily).

2.2 Infinite Horizon Problems

Consider a discrete space discrete time bivariate random process {(Xt, At), t ∈ N}. Notice the
time horizon is now infinite. Solving a general problem like this is difficult unless we make some
assumptions about the regularity of the system. In particular we will assume that the the system is
time homogeneous, this means that at every stage the space state and action space remain constant
and the transition probabilities are independent of time pijt(a) = pij(a) = P{Xt+1 = j|Xt =
i, At = a} for all t = 0, 1, . . .. Costs are also time homogeneous so ct(i, a) = c(i, a) stands for
the cost incurred when action a is taken from state i. However, it is customary to define two
objective functions, besides total cost: discounted cost, and average cost. We will explain these
three problems in the next subsections.

2.2.1 Discounted Cost

In the discounted cost problem the costs in the first stages are more important than the later ones.
In particular, a cost incurred at time t is assumed to have a present value αtr(i, a), where 0 < α < 1
is a discount factor. If the interest per period is r then α = 1/(1+r). The total expected discounted
cost gives rise to a value function under policy π defined as

vπα(i) = Eπ

[ ∞∑
t=0

αtc(Xt, At)
∣∣∣X0 = i

]
, i ∈ S (3)

In this case, the optimal value function is

v∗α(i) = inf
π∈Π

vπα(i),

and it can be shown that it satisfies the following Bellman’s optimality equation

v∗α(i) = min
a∈A(i)

{
c(i, a) + α

∑
j∈S(i,a)

pij(a)v∗α(j)

}
, i ∈ S, (4)
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where A(i) is the set of feasible actions from state i in any stage and S(i, a) is the set of reachable
states. Notice that since t does not appear in the equation it is possible to find an stationary policy
that is optimal.

There are various algorithms for solving the discounted cost problem. One of them is almost
implicit in equation (4). The algorithm is called Value Iteration and begins with some initial values

v
(0)
α (i) and iteratively defines the n-th iteration value function v

(n)
α (i) in terms of v

(n−1)
α (i) according

to

v(n)
α (i) = min

a∈A(i)

{
c(i, a) + α

∑
j∈S(i,a)

pij(a)v(n−1)
α (j)

}
, i ∈ S.

It can be shown that for 0 < α < 1 the algorithm converges regardless of the initial function. For
further details see Bertsekas[2] or Stidham[6]. If the algorithm has stopped after N iterations ,
then the recommended policy will be

f(i) = argmin
a∈A(i)

{
c(i, a) + α

∑
j∈S(i,a)

pij(a)v(N)
α (j)

}
, i ∈ S.

A policy is said to be ε-optimal if its corresponding value function satisfies max |vβ(i)− v∗(i)| < ε.

If the previous algorithm stops when max |v(n)
α (i)−v(n−1)

α (i)| < ε(1−α)/(2α)) then it can be shown
that the stationary policy π = (f, f, . . .) is ε-optimal.

The Policy Iteration algorithm starts with a deterministic policy f(i) and through a series of
iterations find improving policies. In every iteration for a given policy f(i) its corresponding value
function is computed solving the following linear system

vf (i) = c(i, f(i)) + α
∑

j∈S(i,f(i))

pij(f(i))vf (j), i ∈ S, (5)

where vf (i) if the total expected discounted cost under the deterministic stationary policy π =
{f, f, f, . . .}. A new policy f ′ is found through the following policy-improvement step

f ′(i) = argmin
a∈A(i)

{
c(i, f(i)) + α

∑
j∈S(i,a)

pij(f(i))vf (j)

}
, i ∈ S.

After a succession of value computation and policy improvement steps the algorithm stops when no
further improvement can be obtained. This guarantees an optimal solution instead of an ε-optimal
one, but can be very time consuming to solve the systems. The discounted cost problem can also
be solved with a linear program. See [6] for details.

2.2.2 Total Cost

The value function in the total cost case is given by

vπ(i) = Eπ

[ ∞∑
t=0

c(Xt, At)
∣∣∣X0 = i

]
, i ∈ S

and the optimal value function is
v∗(i) = sup

π∈Π
vπ(i)
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The total cost problem can be thought of as a discounted cost with α = 1. However, the algorithms
presented do not work in this case. The policy evaluation in the policy iteration algorithm fails
since the linear system (5) is always singular; and there is no guarantee that the value iteration
algorithm converges unless we impose some additional condition. This is due to the fact that the
total cost might be infinite. One of the conditions is to assume that there exists an absorbing
state with zero-cost and that every policy eventually reaches it. (Weaker conditions can also be
used, see [2] ). This problem is also called the Stochastic Shortest Path’indexStochastic Shortest
Path problem, since since if expected total cost can be thought of as the minimal expected cost
accumulated before absorption in a graph with random costs.

2.2.3 Average Cost

In an ergodic chain that reaches stable state, the steady state probabilities are independent of the
initial state of the system. Intuitively, the average cost per stage should be a constant regardless
of the initial state. So the value function is

vπ(i) = lim
T→∞

1

T
Eπ

[
T∑
t=0

c(Xt, At)
∣∣∣X0 = i

]
, i ∈ S

and the optimal value function is the same for every state

g = v∗(i) = inf
π∈Π

vπ(i)

The average cost per stage problem can be obtained by solving the following linear program

g = min
xia

∑
i∈S

∑
a∈A(i)

c(i, a)xia (6a)

s.t.
∑

a∈A(j)

∑
{i:j∈S(i,a)}

pij(a)xia =
∑
a∈A(i)

xja j ∈ S (6b)

and
∑
i∈S

∑
a∈A(i)

xia = 1, (6c)

where the solution is interpreted as

xia = lim
t→0

P{Xt = i, At = a} i ∈ S, a ∈ A(i).

The equation (6a) is the average cost per transition in steady state, (6b) are analogous to the
balance equations in every markovian system and (6c) is the normalization condition. The optimal
policy can be obtained after the LP has been solved as

πi(a) = P{At = a|Xt = i} =
xia∑

b∈A(i) xib
. i ∈ S, a ∈ A(i)

It can be shown that for every i ∈ S the is only one a ∈ A(i) that is positive, so the optimal policy
is always deterministic. There is also an iterative solution based on a modification of the value
iteration algorithm. See [5] for details.

Remark 1 It may seem to the reader that the infinite horizon admits more type of cost functions
that the finite counterpart. That is not the case. The fact that the cost function depends on t, allows
us to define a discounted cost as ct(i, a) = αtc(i, a), and an average cost as ct(i, a) = 1

T c(i, a).
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2.3 Deterministic Dynamic Programming

This is a particular case of the finite horizon problem defined earlier. When the set of reachable
states St(i, a) has only one state for all t ∈ N, i ∈ S, a ∈ A, then it is clear that all the probability
of reaching this state has to be 1.0, and 0 for every other state. This would be a deterministic
transition. So it is possible to define a transition function h : S ×A×N→ S, that assigns to each
state and action to be taken at the given stage, a unique destination state. Under this conditions,
the Bellman equation would look like

vt(i) = min
a∈At(i)

{
ct(i, a) + vt+1

(
h(i, a, t)

)}
, i ∈ S, t ∈ N.

Naturally, there are also infinite horizon counterparts as in the probabilistic case.

2.4 Main modeling elements in MDP

Recall the Bellman equation (2). As explained before, Xt and At are the state and the action taken
at stage t respectively. The set At(i) is the set of actions that can be taken from state i at stage t.
So the optimal action is selected only from this feasible action set, for the statement to make sense.
In the equation, the first cost is taken, and then it is added to the expected future value function.

The expected future value function is a sum over the states in St(i, a). This is the set of
reachable states from state i given that action a is taken at stage t. If this set was not defined,
then the sum would be over all the possible states S, and its value would be the same, only that
there would be many probabilities equal to zero.

As a summary, if the elements in Table 1 are clearly identified, then it is possible to say that
the Markov Decision Process has been defined.

Element Mathematical
representation

States Xt ∈ S
Actions At ∈ A
Feasible actions At(i)
Reachable states St(i, a)

Transition probabilities pijt(a)

Costs ct(i, a)

Table 1: Main elements

3 Framework Design

As stated before, the intention is to make this framework as easy to use as possible. An analogy
is stated between the mathematical elements presented above and the computational elements
that will be explained. There is first a general overview of the framework, and specific details of
each structure will be presented afterwards. This first part should be enough to understand the
examples.

The framework is divided in two packages. The modeling package is called jmdp, and the solving
package is jmpd.solvers. The user does not need to interact with this second one, because a standard
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solver is defined for every type of problem. However, as the user gains experience he mights want
to fine-tune the solvers or even define his/her own solver by using the package jmdp.solvers.

The following steps will show how to model a problem. An inventory problem will be used.

1. Defining the states. The first thing to do when modeling a problem, is to define which will
be the states. Each state Xt is represented by an object or class, and the user must modify
the attributes to satisfy the needs of each problem. The class State is declared abstract and can
not be used explicitly; the user must extend class State and define his own state for each type
of problem. Once each state has been defined, a set of states S can be defined with the class
States. For example, in an inventory problem, the states are inventory levels. The following
file defines such a class. It has a constructor, and, very important implemente compareTo() to
establish a total ordering among the states. If no comparator is provided, then the sorting
will be made according to the name, which might be very inefficient in real problems.

1 /∗
2 ∗ Created on 26/06/2004
3 ∗
4 ∗/
5 package examples . jmdp ;
6
7 import jmarkov . MarkovProcess ;
8 import jmarkov . ba s i c . P rope r t i e sS t a t e ;
9

10 /∗∗
11 ∗ This c l a s s a l lows to represent a State with a song le in t eger .
12 ∗ I t ’ s used in many of the examples .
13 ∗ @author Daniel Si lva , German Riano , Andres Sarmiento . Universida de l o s Andes
14 ∗/
15 public c lass InvLevel extends Prope r t i e sS ta t e {
16 /∗∗
17 ∗ Defaul t constructor .
18 ∗ @param k The l e v e l
19 ∗/
20 public InvLevel ( int k ) {
21 super (new int [ ] {k } ) ;
22 }
23
24 /∗∗
25 ∗ Return the inventory l e v e l
26 ∗
27 ∗ @return The l e v e l .
28 ∗/
29 public int getLeve l ( ) {
30 return prop [ 0 ] ;
31 }
32
33 @Override
34 public St r ing label ( ) {
35 return ” Level ” + getLeve l ( ) ;
36 }
37
38 /∗∗
39 ∗ @see jmarkov . bas ic . State#computeMOPs( MarkovProcess )
40 ∗/
41 @Override
42 public void computeMOPs( MarkovProcess mp) {
43 // TODO Auto−generated method stub
44 }
45
46
47 /∗∗
48 ∗ @see jmarkov . bas ic . State#isCons i s tent ()
49 ∗/
50 @Override
51 public boolean i s C o n s i s t e n t ( ) {
52 // TODO Auto−generated method stub
53 return true ;
54 }
55
56 }

8



2. Defining the actions.The next step is to define the actions of the problem. Again, each
action At is represented by an object called Action, and this is an abstract class that must be
extended in order to use it. In an inventory problem, the actions that can be taken from each
state are orders placed.

1 package examples . jmdp ;
2
3 import jmarkov . ba s i c . Action ;
4
5 /∗∗
6 ∗ This c l a s s represents an order in an inventory system .
7 ∗ I t i s used in many of the Examples .
8 ∗
9 ∗ @author Germán Riano , Andres Sarmiento

10 ∗/
11 public c lass Order extends Action {
12 private int s i z e ;
13
14 /∗∗
15 ∗ Defual t constructor . Recives the s i z e order .
16 ∗ @param k
17 ∗/
18 Order ( int k ) {
19 s i z e = k ;
20 }
21
22 @Override
23 public St r ing label ( ) {
24 return ”Order ” + s i z e + ” Units ” ;
25 }
26
27 public int compareTo ( Action a ) {
28 i f ( a instanceof Order )
29 return ( s i z e − ( ( Order ) a ) . s i z e ) ;
30 else
31 throw new I l l ega lArgumentExcept ion (
32 ”Comparing with d i f f e r e n t type o f Action . ” ) ;
33 }
34
35 /∗∗
36 ∗ @return Returns the order s i z e .
37 ∗/
38 public f ina l int ge tS i z e ( ) {
39 return s i z e ;
40 }
41
42 }

3. Defining the problem. In some way, the states and actions are independent of the problem
itself. The rest of the modeling corresponds to the problem’s structure that is also represented
by an object. In this case, the object is more complex than the ones defined earlier, but it
combines the important aspects of the problem. The classes that represent the problem are
also abstract classes and must be extended in order to be used. See table (2) for reference on
which class to extend for each type of problem.

Type of Problem Class to be extended

Finite Horizon Dynamic Programming Problem FiniteDP<S,A>

Infinite Horizon Dynamic Programming Problem InfiniteDP<S,A>
1

Finite Horizon MDP FiniteMDP<S,A>

Infinite Horizon MDP InifiniteMDP<S,A>

Table 2: Types of Problems

1 public c lass InventoryProblem extends FiniteMDP<InvLevel , Order>{
2
3 }
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Once one of these classes is extended in a blank editor file, compilation errors will prompt
up. This doesn’t mean the user has done anything wrong, it is just a way to make sure all
the requisites are fulfilled before solving the problem. Java has a feature called generics that
allows safe type transitions. In the examples, whenever S is used, it stands for S extends State

that is the class being used to represent a state. In the same way A is the representation of
A extends Action. In the inventory example, class FiniteMDP<S,A> will be extended and the editor
will indicate the user that there are compilation errors because some methods have not yet
been implemented. This means the user must implement this methods in order to model the
problem, and also for the program to compile. It is necessary that the state and the action
that were defined earlier are indicated in the field <S,A> as state and action as shown in the
example. This will allow the methods to know that this class is using these two as states and
actions respectively.

4. Feasible actions. The first of these methods is public Actions getActions(S i, int t). For a given
state i this method must return the set of feasible actions A(i) that can be taken at stage
t. Notice that the declaration of the method takes element i as of type S but in the concrete
example, the compiler knows the states that are being used are called InvLevel and so changes
the type.

1 public Actions getAct ions ( InvLeve l i , int t ){
2 Actions<Order> ac t i onSe t = new Act ionsCo l l e c t i on<Order >() ;
3 for ( int n=0; n<=K−i . l e v e l ; n++){
4 ac t i onSe t . add (new Order (n ) ) ;
5 }
6 return ac t i onSe t ;
7 }

The example procedure returns the actions corresponding to the set {0, 1, . . . ,K−i}, the user
can declare an empty set called actionSet of type ActionsCollection<Order>, which is an easy-to-use
extension of Actions<A>. The generics use is indicating that the set will store objects of type
Order. Then for each iteration of the for cycle, create a new order and this new action is added
to the set. After adding all the actions needed, the method returns the set of actions.

5. Reachable states. The second method in the class FiniteMDP<S,A> that must be implemented
public States reachable(S i , A a, int t) indicates the set of reachable states St(i, a) from state i and
given that action a is taken at stage t . The example shows how to define the set of states
{0, 1, . . . , a+ i}. First declare an empty set called statesSet of type StatesCollection<InvLevel> which
is an easy-to-use extension of States<S>, that indicates this set will store objects of type InvLevel.
Then a for cycle adds a state for each value between 0 and a+ i.

1 public State s reachab le ( InvLeve l i , Order a ) {
2 States<InvLevel> s t a t e s S e t = new Sta t e sCo l l e c t i on <InvLevel >() ;
3 for ( int n=0;n<=a . s i z e+i . l e v e l ; n++)
4 s t a t e s S e t . add (new InvLeve l (n ) ) ;
5 return s t a t e s S e t ;
6 }

6. Transition Probabilities. The method public double prob(S i, S j, A a) is still pending to be
implemented and represents the transition probabilities pijt(a).

7. Costs. The final method is the one representing the cost ct(i, a) received by taking action a
from state i represented by the method public double immediateCost(S i, A a). Once these methods
are implemented the class should compile.

8. The main method. In order to test the model and solve it, the class may also have a main

method. This is of course not necessary, since the class can be called from other classes
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or programs provided you have been careful to declare it constructor public. The following
example shows that the name of the class extending FiniteMDP is InventoryProblem so the main

method must first declare an object of that type, with the necessary parameters determined
in the constructor method. Then the solve() method must be called from such and the problem
will call a default solver, solve the problem, store the optimal solution internally. You can
obtain information about the optimal policy and value functions by calling the getOptimalPolicy()

and getoptimalValue() methods. There is also a convenience method called printSolution() which
prints the solution in standard output.

1 public stat ic void main ( St r ing args [ ] ) {
2
3 InventoryProblem prob = new InventoryProblem ( maxInventory ,
4 maxItemsPerOrder , truckCost , holdingCost , theta ) ;
5
6 prob . s o l v e ( )
7 prob . p r i n t S o l u t i o n ( )
8 }

MDP

Actions

Action

Actions

Action

Policy

DecisionRule

Policy

DecisionRule

States

State

States

State

Solver

MyState

MyAction

MyProblem

Solver solver
Policy policy
States states

•Actions getActions(State i)
•States reachable(State i, Action a)
•double prob(State i, State j, Action a)
•double immediateCost(State i, Action a)

Figure 2: Problem’s structure.

Element Mathematical Computational
representation representation

States Xt ∈ S public class MyState extends State

Actions At ∈ A public class MyAction extends Action

Process {Xt, At} public class MyProblem extends FiniteMDP<S,A>

Feasible actions At(i) public Actions getActions(S i, int t)

Reachable states St(i, a) public States reachable(S i , A a, int t)

Transition probabilities pijt(a) public double prob(S i, S j, A a, int t)

Costs ct(i, a) public double immediateCost(S i, A a, int t)

For details on the construction of specifc sets, modifying the solver or solver options, see the
Java documentation and the Advanced Features section.
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4 Examples

This sections shows some problems and their solution with JMDP in order to illustrate its use. The
examples cover the usage of the DP, FiniteMDP, and InfiniteMDP classes.

4.1 Deterministic inventory problem

Consider a car dealer selling identical cars. All the orders to the distributor have to be placed
on Friday eve and arrive on Monday morning before opening. The car dealer is open Monday to
Friday. Each car is bought at USD $20.000 and sold at USD$22.000. A transporter charges a fixed
fee of USD$500 per truck for carrying the cars from the distributor to the car dealer, and each
truck can carry 6 cars. The exhibit hall has space for 15 cars. If a customer orders a car and there
are not cars available, the car dealer gives him the car a soon as it gets with a USD$1000 discount.
The car dealer does not allow more than 5 pending orders of this type. Holding inventory implies
a cost of capital of 30% annually. The marketing department has handed in the following demand
forecasts, for the next 12 weeks, shown in table (3).

Weeks

t 1 2 3 4 5 6 7 8 9 10 11 12

Dt 10 4 3 6 3 2 0 1 7 3 4 5

Table 3: Demand forecast.

Let’s first formulate the mathematical model, and then the computational one. The parameters
in the word problem are in Table 4.

K Fixed cost per truck.
c Unit cost.
p Unit price.
Dt Demand at week t.
h Holding cost per unit per week.
b Backorder cost.
M Maximum exhibit hall capacity.
B Maximum backorders allowed.
L Truck’s capacity.
T Maximum weeks to model.

Table 4: Parameters

The problem will be solved using dynamic programming to determine the appropriate amount
to order in each week in order to minimize the costs. The problem has a finite horizon and is
deterministic.

1. States. Each state Xt is the inventory level at each stage t, where the stages are the weeks.
When there are backorders, they will be denoted as a negative inventory level. The set of
states S = {−B, . . . , 0, . . . ,M} are all the levels between the negative maximum backorders
adn the maximum inventory level.

2. Actions. Each action At is the order placed in each stage t. The complete set of actions are
the orders from 0 to the addition of the maximum exhibit hall’s capacity and the maximum

12



backorders allowed. A = {0, . . . , B +M}.

3. Feasible Actions. For each state i the feasible actions that can be taken are those that will
not exceed the exhibit hall’s capacity. Ordering 0 is the minimum order and is feasible in
every state. The maximum order feasible is M − i, so the feasible set of actions for each state
i is At(i) = {0, . . . ,M − i}.

4. Destination. The destination state when action a is taken from state i is the sum of the cars
in that state and the cars that are ordered, minus the cars that are sold. h(i, a, t) = i+a−Dt.

5. Costs. Finally, the cost incured depends on various factors. The ordering cost is only charged
when the order is positive, and charged per truck. The holding cost is charged only when
there is positive stock, and the backorder cost charged only when there is negative stock.
There is finally a profit for selling each car given by the difference between price and cost.

OC(a) =
⌈ a
L

⌉

HC(i) +BC(i) =

{
−ib if i ≤ 0
ih if i > 0

rt(i, a) = OC(a) +HC(i) +BC(i) + (p− c)Dt

Now, computationally, the file would look like this.

1 package examples . jmdp ;
2
3 import jmarkov . ba s i c . Act ions ;
4 import jmarkov . ba s i c . Act ionsSet ;
5 import jmarkov . ba s i c . S ta t e sSe t ;
6 import jmarkov . ba s i c . except i ons . So lverExcept ion ;
7 import jmarkov . jmdp . FiniteDP ;
8 import jmarkov . jmdp . s o l v e r s . F i n i t e S o l v e r ;
9

10 /∗∗
11 ∗ This example s o l v e s a determinis t i c , dynamic lo t−s i z i n g problem , a l so known
12 ∗ as a Wagner Whitin problem .
13 ∗
14 ∗ @author Andres Sarmiento , Germán Riaño − Universidad de Los Andes
15 ∗/
16
17 public c lass WagnerWhitin extends FiniteDP<InvLevel , Order> {
18 int l a s tS tage , maxInventory , maxBackorders , t ruckS i z e ;
19
20 double K, b , h , pr i ce , co s t ;
21
22 int [ ] demand ;
23
24 // Constructor
25
26 /∗∗
27 ∗ Crates a dynamic economic l o t s i z i n g problem to be so lved by Wagner
28 ∗ Whitin algorithm .
29 ∗
30 ∗ @param i n i t i a l I n v e n t o r y
31 ∗ Inventory at time t =0.
32 ∗ @param l a s t S t a g e
33 ∗ the l a s t s tage of the problem
34 ∗ @param maxInventory
35 ∗ maximum phys i ca l capaci ty in inventory , warehouse s i z e .
36 ∗ @param maxBackorders
37 ∗ maximum backorders al lowed
38 ∗ @param truckS i ze
39 ∗ maximum items in each f i x e d cos t order . Orders can be greater
40 ∗ than t h i s value , but w i l l be charged more than one f i x e d cos t .
41 ∗ @param K
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42 ∗ f i x e d cos t per order
43 ∗ @param b
44 ∗ unit cos t per backordered item per s tage
45 ∗ @param price
46 ∗ unit pr ice for a l l s tages
47 ∗ @param cost
48 ∗ unit costo for a l l s tages
49 ∗ @param h
50 ∗ inventory percentua l ho ld ing cos t as a f r a c t i o n of cos t
51 ∗ @param demand
52 ∗ demand of items in each s tage
53 ∗/
54
55 public WagnerWhitin ( int i n i t i a l I n v e n t o r y , int l a s tS tage , int maxInventory ,
56 int maxBackorders , int t ruckS ize , double K, double b , double pr i ce ,
57 double cost , double h , int [ ] demand) {
58 super (new StatesSet<InvLevel >(new InvLevel ( i n i t i a l I n v e n t o r y ) ) ,
59 l a s t S t a g e ) ;
60 this . maxInventory = maxInventory ;
61 this . maxBackorders = maxBackorders ;
62 this . t ru ckS i z e = t ruckS i z e ;
63 this .K = K;
64 this . b = b ;
65 this . h = h ;
66 this . demand = demand ;
67 this . p r i c e = p r i c e ;
68 this . c o s t = cos t ;
69 i n i t ( ) ;
70 }
71
72 void i n i t ( ) {// This method b u i l d s a l l the s t a t e s and the act ions .
73 Order ac t s [ ] = new Order [ this . maxInventory + maxBackorders + 1 ] ;
74 InvLevel s s t s [ ] = new InvLevel [ maxInventory + maxBackorders + 1 ] ;
75 for ( int k = 0 ; k < maxInventory + maxBackorders + 1 ; k++) {
76 ac t s [ k ] = new Order (k ) ;
77 s s t s [ k ] = new InvLeve l ( k − maxBackorders ) ;
78 }
79 // s t a t e s = new Sta tesCo l l ec t ion<InvLevel >( s s t s ) ;
80 }
81
82
83
84 private double holdingCost ( int x ) {
85 return ( x > 0) ? h ∗ co s t ∗ x : 0 . 0 ;
86 } // hold ing cos t
87
88 private double orderCost ( int x ) {
89 return ( x > 0) ? Math . c e i l ( ( double ) x / t ruckS i z e ) ∗ K : 0 . 0 ;
90 } // Order cos t
91
92 double backorderCost ( int x ) {
93 return ( x < 0) ? −b ∗ x : 0 . 0 ;
94 }
95
96 double l o s tOrderCost ( int x , int t ) {
97 return ( x + maxBackorders < demand [ t ] ) ? ( p r i c e − co s t )
98 ∗ (demand [ t ] − x − maxBackorders ) : 0 . 0 ;
99 }

100
101 /∗∗
102 ∗ Returns the optimal cos t for t h i s l e v e l o f s t a r t i n g inventory .
103 ∗
104 ∗ @param inventory
105 ∗ @return The optimal cos t for t h i s l e v e l of s t a r t i n g inventory .
106 ∗ @throws SolverException
107 ∗/
108 public double getOptimalCost ( int inventory ) throws SolverExcept ion {
109 return getOptimalValueFunction ( ) . get (new InvLeve l ( inventory ) ) ;
110 }
111
112 @Override
113 public double immediateCost ( InvLeve l i , Order a , int t ) {
114 int s = i . ge tLeve l ( ) ;
115 int o = a . g e tS i z e ( ) ;
116 return l o s tOrderCost ( o , t ) + orderCost ( o ) + holdingCost ( s + o )
117 + backorderCost ( s + o ) ;
118 // return −2000∗(Math .max( s+o−demand [ t ] ,0))+ hold ing ( s + o , t)+
119 // orderCost (o , t ) ;
120 }
121
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122 @Override
123 public double f i n a l C o s t ( InvLevel i ) {
124 return 0 . 0 ;
125 }
126
127 @Override
128 public Actions<Order> f e a s i b l e A c t i o n s ( InvLeve l i , int t ) {
129 ActionsSet<Order> ac t i onSe t = new ActionsSet<Order >() ;
130 int min order = Math . max(−maxBackorders − i . g e tLeve l ( ) + demand [ t ] , 0 ) ;
131 int max order = maxInventory − i . g e tLeve l ( ) + demand [ t ] ;
132 for ( int n = min order ; n <= max order ; n++) {
133 ac t i onSe t . add (new Order (n ) ) ;
134 }
135 return ac t i onSe t ;
136 }
137
138 @Override
139 public InvLevel d e s t i n a t i o n ( InvLevel i , Order a , int t ) {
140 int o = a . g e tS i z e ( ) ;
141 int i L e v e l = i . ge tLeve l ( ) ;
142 return new InvLevel (Math . max( i Le ve l + o − demand [ t ] , −maxBackorders ) ) ;
143 }
144
145 /∗∗
146 ∗ Test Program .
147 ∗
148 ∗ @param a
149 ∗ @throws Exception
150 ∗/
151 public stat ic void main ( St r ing a [ ] ) throws Exception {
152 int l a s t S t a g e = 12 ;
153 int maxInventory = 15 ;
154 int maxBackorders = 5 ;
155 int t ruckS i z e = 6 ;
156 double K = 500 ;
157 double b = 2000 ;
158 double p = 22000;
159 double c = 20000;
160 double h = Math . pow ( 1 . 3 , 1 . 0 / 52) − 1 . 0 ;
161 int [ ] demand = new int [ ] { 10 , 4 , 3 , 6 , 3 , 2 , 0 , 1 , 7 , 3 , 4 , 5 } ;
162
163 WagnerWhitin prob = new WagnerWhitin (0 , l a s tStage , maxInventory ,
164 maxBackorders , t ruckS ize , K, b , p , c , h , demand ) ;
165
166
167 F in i t eSo lve r<InvLevel , Order> theSo lve r = new Fin i t eSo lve r<InvLevel , Order>(
168 prob ) ;
169 prob . s e t S o l v e r ( theSo lve r ) ;
170 prob . s o l v e ( ) ;
171 prob . g e tSo lv e r ( ) . setPr intValueFunct ion ( true ) ;
172 // System . out . p r i n t l n ( theSo lver . be s tPo l i cy ( i n i t i a l ) ) ;
173 prob . p r i n t S o l u t i o n ( ) ;
174 prob . getOptimalCost ( 0 ) ;
175 }
176
177 }

4.2 Finite horizon stochastic inventory problem

Consider the car dealer in the past example. The car dealer selling identical cars. All the orders
placed to the distributor arrive on Monday morning. The car dealer is open Monday to Friday.
Each car is bought at USD $20.000 and sold at USD$22.000. A transporter charges a fixed fee of
USD$500 per truck for carrying the cars from the distributor to the car dealer, and each truck can
carry 6 cars. The exhibit hall has space for 15 cars. If a customer orders a car and there are not
cars available, the car dealer gives him the car a soon as it gets with a USD$1000 discount. The
car dealer does not allow more than 5 pending orders of this type. Holding inventory implies a cost
of capital of 30% annually. Now instead of receiving demand forecasts, marketing department has
informed that the demand follows a Poisson process.

The parameters of the problem are shown in table 5
The problem is a finite horizon stochastic problem. Markov Decision Processes can be used in

15



K Fixed cost per truck.
c Unit cost.
p Unit price.
h Holding cost per unit per week.
b Backorder cost.
M Maximum exhibit hall capacity.
B Maximum backorders allowed.
L Truck’s capacity.
T maximum weeks to model.
Dt Random variable that represents the weekly demand.
θ Demand’s mean per week t.
pn P{Dt = n}
qn P{Dt >= n}

Table 5: Parameters

order to minimize the costs.

1. States. Each state Xt is the inventory level at each stage t, where the stages are the weeks.
When there are backorders, they will be denoted as a negative inventory level. The set of
states S = {−B, . . . , 0, . . . ,M} are all the levels between the negative maximum backorders
adn the maximum inventory level.

2. Actions. Each action At is the order placed in each stage t. The complete set of actions are
the orders from 0 to the addition of the maximum exhibit hall’s capacity and the maximum
backorders allowed. A = {0, . . . , B +M}.

3. Feasible Actions. For each state i the feasible actions that can be taken are those that will
not exceed the exhibit hall’s capacity. Ordering 0 is the minimum order and is feasible in
every state. The maximum order feasible is M − i, so the feasible set of actions for each state
i is At(i) = {0, . . . ,M − i}.

4. Reachable States. The minimum reachable state when action a is taken from state i would
be −B, when the demand is maximum (b+ i). The maximum reachable state when action a
is taken from state i is i when the demand is minimum (0). So the set of reachable states are
all the states ranging between these two: St(i, a) = {−B, . . . , i}.

5. Costs. The net profit (minus cost) obtained depends on various factors. The ordering cost is
only charged when the order is positive, and charged per truck.

OC(a) =
⌈ a
L

⌉
The holding cost is charged only when there is positive stock, and the backorder cost charged
only when there is negative stock.

HC(i) +BC(i) =

{
−ib if i ≤ 0
ih if i > 0
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Finally, there is an expected lost sales cost (Using x = i+ a+B):

E[Dt − x]+ =

∞∑
d=x+1

(
d− x

)
pd

=
∞∑

d=x+1

dpd −
∞∑

d=x+1

xpd

=
∞∑

d=x+1

d
θde−θ

d!
− x

∞∑
d=x+1

pd

= θ
∞∑

d=x+1

θd−1e−θ

(d− 1)!
− xqx+1

= θ
∞∑

d=x+1

pd−1 − xqx+1

= θ

∞∑
d=x

pd − xqx+1

= θ(qx)− x(qx − px)

= θ(qx − px)− xqx

Now, computationally, the file would look like this.

1 package examples . jmdp ;
2
3 import jmarkov . ba s i c . Act ions ;
4 import jmarkov . ba s i c . Act ionsSet ;
5 import jmarkov . ba s i c . S ta t e s ;
6 import jmarkov . ba s i c . S ta t e sSe t ;
7 import jmarkov . jmdp . FiniteMDP ;
8
9 /∗∗

10 ∗ This c l a s s be longs to the examples supp l i ed in the package jmdp . The
11 ∗ o b j e c t i v e of t h i s f i l e i s to show as c l ear as p o s s i b l e a simple way to use
12 ∗ the jmdp package as a t o o l for s o l v i n g r e a l l i f e problems . The complete
13 ∗ d e t a i l s of the present problems are exp la ined in the documentation .
14 ∗
15 ∗ @author Andres Sarmiento , German Riano − Universidad de Los Andes
16 ∗/
17 public c lass StochasticDemand extends FiniteMDP<InvLevel , Order> {
18 //TODO: This example needs more documentation
19 int l a s tS tage , maxInventory , maxBackorders , t ruckS i z e ;
20
21 double K, b , h , theta , pr i ce , co s t ;
22
23 double [ ] demandProbabil ity , demandCumulativeProbabil ity ;
24
25 // demandProbabi l i l ty [ i ] = P[Demand = i ]
26 // demandCDF[ i ] = P{Demand >= i }
27
28 // Constructor
29
30 /∗∗
31 ∗ @param i n i t S e t
32 ∗ I n i t i a l l e v e l o f inventory of the system
33 ∗ @param l a s t S t a g e
34 ∗ the l a s t s tage of the problem
35 ∗ @param maxInventory
36 ∗ maximum phys i ca l capaci ty in inventory , warehouse s i z e .
37 ∗ @param maxBackorders
38 ∗ maximum backorders al lowed
39 ∗ @param truckS i ze
40 ∗ maximum items in each f i x e d cos t order . Orders can be greater
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41 ∗ than t h i s value , but w i l l be charged more than one f i x e d cos t .
42 ∗ @param K
43 ∗ f i x e d cos t per order
44 ∗ @param b
45 ∗ unit cos t per backordered item per s tage
46 ∗ @param price
47 ∗ unit pr ice for a l l s tages
48 ∗ @param cost
49 ∗ unit costo for a l l s tages
50 ∗ @param h
51 ∗ inventory percentua l ho ld ing cos t as a f r a c t i o n of cos t
52 ∗ @param theta
53 ∗ demand mean
54 ∗/
55
56 public StochasticDemand ( States<InvLevel> i n i t S e t , int l a s tS tage ,
57 int maxInventory , int maxBackorders , int t ruckS ize , double K,
58 double b , double pr i ce , double cost , double h , double theta ) {
59 super ( i n i t S e t , l a s t S t a g e ) ;
60 this . maxInventory = maxInventory ;
61 this . maxBackorders = maxBackorders ;
62 this . t ru ckS i z e = t ruckS i z e ;
63 this .K = K;
64 this . b = b ;
65 this . p r i c e = p r i c e ;
66 this . c o s t = cos t ;
67 this . h = h ;
68 this . theta = theta ;
69 // i n i t S t a t e s ( ) ;
70 i n i t i a l i z e P r o b a b i l i t i e s ( ) ;
71 }
72
73 double holdingCost ( int x ) {
74 double temp = (x > 0) ? h ∗ co s t ∗ x : 0 . 0 ;
75 return temp ;
76 } // hold ing cos t
77
78 double orderCost ( int x ) {
79 double temp = (x > 0) ? Math . c e i l ( (new I n t eg e r ( x ) ) . doubleValue ( )
80 / t ruckS i z e )
81 ∗ K /∗ + x ∗ cos t ∗/ : 0 . 0 ;
82 return temp ;
83 } // Order cos t
84
85 double backorderCost (double x ) {
86 return ( x < 0) ? −b ∗ x : 0 . 0 ;
87 }
88
89 double l o s tOrderCost ( int x ) {
90 int mB = maxBackorders ;
91 double expectedBackorders = 0 ;
92 for ( int n = Math . max(x + 1 , 0 ) ; n <= x + mB; n++)
93 expectedBackorders += (n − x ) ∗ demandProbabil ity [ n ] ;
94 double expectedLostDemand = demandCumulativeProbabil ity [ x + mB]
95 ∗ ( theta − x − mB) + (x + mB) ∗ demandProbabil ity [ x + mB] ;
96 return ( p r i c e − co s t ) ∗ expectedLostDemand
97 + backorderCost(−expectedBackorders ) ;
98 }
99

100 @Override
101 public double f i n a l C o s t ( InvLevel i ) {
102 return 0 . 0 ;
103 }
104
105 // see documentation for the exp lanat ion for t h i s formula
106
107 @Override
108 public double prob ( InvLeve l i , InvLeve l j , Order a , int t ) {
109 int i L e v e l = i . ge tLeve l ( ) ;
110 int jL eve l = j . ge tLeve l ( ) ;
111 int o rde rS i z e = a . g e tS i z e ( ) ;
112
113 // with s tock & demand i s p o s i t i v e & order i s f e a s a b l e
114 i f ((−maxBackorders < jL eve l ) && ( jLeve l <= orde rS i z e + iL ev e l )
115 && ( o rde rS i z e + i Le ve l <= maxInventory ) )
116 return demandProbabil ity [ o rde rS i z e + iL ev e l − jL eve l ] ;
117 else i f ( ( o rde rS i z e + i Le ve l <= maxInventory )
118 && ( jLeve l == −maxBackorders ) ) // End up s t o c k l e s s
119 return demandCumulativeProbabil ity [ Math . max( o rde rS i z e + iLeve l , 0 ) ] ;
120 else
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121 return 0 . 0 ;
122 }
123
124 @Override
125 public double immediateCost ( InvLeve l i , Order a , int t ) {
126 int i L e v e l = i . ge tLeve l ( ) ;
127 int o rde rS i z e = a . g e tS i z e ( ) ;
128 double toReturn = orderCost ( o rde rS i z e )
129 + holdingCost ( i L e v e l /∗ + orderSize ∗/ )
130 + lostOrderCost ( i L e v e l + orde rS i z e ) ;
131 return toReturn ;
132 }
133
134 void i n i t S t a t e s ( ) {
135 InvLevel s s t s [ ] = new InvLevel [ maxInventory + maxBackorders + 1 ] ;
136 for ( int n = 0 ; n <= maxInventory ; n++) {
137 s s t s [ n ] = new InvLeve l (n ) ;
138 }
139 for ( int n = maxInventory + 1 ; n <= maxInventory + maxBackorders ; n++) {
140 s s t s [ n ] = new InvLeve l (n − maxInventory − maxBackorders − 1 ) ;
141 }
142 // s t a t e s = new Sta tesCo l l ec t ion<InvLevel >( s s t s ) ;
143 }
144
145 void i n i t i a l i z e P r o b a b i l i t i e s ( ) {
146 demandProbabil ity = new double [ maxInventory + maxBackorders + 1 ] ;
147 demandCumulativeProbabil ity = new double [ maxInventory + maxBackorders
148 + 1 ] ;
149 demandProbabil ity [ 0 ] = Math . exp(− theta ) ;
150 demandCumulativeProbabil ity [ 0 ] = 1 ; // P[ demand >= 0]
151 double q = 1 ;
152 for ( int i = 1 ; i <= maxInventory + maxBackorders ; i++) {
153 q = demandCumulativeProbabil ity [ i − 1 ] ;
154 // P{demand >= i }
155 demandCumulativeProbabil ity [ i ] = q − demandProbabil ity [ i − 1 ] ;
156 // P{demand = i }
157 demandProbabil ity [ i ] = demandProbabil ity [ i − 1 ] ∗ theta / i ;
158 }
159 }
160
161 @Override
162 public Actions<Order> f e a s i b l e A c t i o n s ( InvLeve l i , int t ) {
163 int max = maxInventory − i . g e tLeve l ( ) ;
164 Order [ ] vec = new Order [ max + 1 ] ;
165 for ( int n = 0 ; n <= max ; n++) {
166 vec [ n ] = new Order (n ) ;
167 }
168 return new ActionsSet<Order>(vec ) ;
169 }
170
171 @Override
172 public States<InvLevel> r eachab le ( InvLeve l i , Order a , int t ) {
173 StatesSet<InvLevel> s t a t e s S e t = new StatesSet<InvLevel >() ;
174 for ( int n = −maxBackorders ; n <= i . ge tLeve l ( ) + a . g e tS i z e ( ) ; n++) {
175 s t a t e s S e t . add (new InvLevel (n ) ) ;
176 }
177 return s t a t e s S e t ;
178 }
179
180 /∗∗
181 ∗ @param a Not used
182 ∗ @throws Exception
183 ∗/
184 public stat ic void main ( St r ing a [ ] ) throws Exception {
185 int l a s t S t a g e = 12 ;
186 int maxInventory = 15 ;
187 int maxBackorders = 5 ;
188 int t ruckS i z e = 6 ;
189 int K = 500 ;
190 double b = 1000 ;
191 double h = 0 .0050582 ; // Math . pow (1.3 , 1 / 52)−1;
192 double theta = 4 ;
193 double p r i c e = 22000;
194 double co s t = 20000;
195 InvLevel i n i t i a l = new InvLevel ( 0 ) ;
196 States<InvLevel> i n i t S e t = new StatesSet<InvLevel >( i n i t i a l ) ;
197
198 StochasticDemand pro = new StochasticDemand ( i n i t S e t , l a s tS tage ,
199 maxInventory , maxBackorders , t ruckS ize , K, b , pr i ce , cost , h ,
200 theta ) ;
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201 pro . s o l v e ( ) ;
202 pro . g e tSo lve r ( ) . setPr intValueFunct ion ( true ) ;
203 pro . p r i n t S o l u t i o n ( ) ;
204 }
205
206 }

4.3 Infinite horizon stochastic inventory problem

Consider the car dealer in the past example. The car dealer selling identical cars. All the orders
placed to the distributor arrive on Monday morning. The car dealer is open Monday to Friday.
Each car is bought at USD $20.000 and sold at USD$22.000. A transporter charges a fixed fee of
USD$500 per truck for carrying the cars from the distributor to the car dealer, and each truck can
carry 6 cars. The exhibit hall has space for 15 cars. If a customer orders a car and there are not
cars available, the car dealer gives him the car a soon as it gets with a USD$1000 discount. The
car dealer does not allow more than 5 pending orders of this type. Holding inventory implies a cost
of capital of 30% annually. Now instead of receiving demand forecasts, marketing department has
informed that the demand follows a Poisson process.

The parameters of the problem are shown in table (6).

K Fixed cost per truck.
c Unit cost .
p Unit price.
h Holding cost per unit per week.
b Backorder cost.
M Maximum exhibit hall capacity.
B Maximum backorders allowed.
L Truck’s capacity.
Dt Random variable that represents the weekly demand.
θ Demand’s mean per week t.
pn P{Dt = n}
qn P{Dt ≥ n}

Table 6: Parameters

The problem is a finite horizon stochastic problem. Markov Decision Processes can be used in
order to minimize the costs.

1. States. Each state Xt is the inventory level at each stage t, where the stages are the weeks.
When there are backorders, they will be denoted as a negative inventory level. The set of
states S = {−B, . . . , 0, . . . ,M} are all the levels between the negative maximum backorders
adn the maximum inventory level.

2. Actions. Each action At is the order placed in each stage t. The complete set of actions are
the orders from 0 to the addition of the maximum exhibit hall’s capacity and the maximum
backorders allowed. A = {0, . . . , B +M}.

3. Feasible Actions. For each state i the feasible actions that can be taken are those that will
not exceed the exhibit hall’s capacity. Ordering 0 is the minimum order and is feasible in
every state. The maximum order feasible is M − i, so the feasible set of actions for each state
i is At(i) = {0, . . . ,M − i}.
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4. Reachable States. The minimum reachable state when action a is taken from state i would
be −B, when the demand is maximum (b+ i). The maximum reachable state when action a
is taken from state i is i when the demand is minimum (0). So the set of reachable states are
all the states ranging between these two: St(i, a) = {−B, . . . , i}.

5. Cost. The net profit obtained depends on various factors. The ordering cost is only charged
when the order is positive, and charged per truck.

OC(a) =
⌈ a
L

⌉
The holding cost is charged only when there is positive stock, and the backorder cost charged
only when there is negative stock.

HC(i) +BC(i) =

{
−ib if i ≤ 0
ih if i > 0

Finally, there is an expected lost sales cost (Using x = i+ a+B):

E[Dt − x]+ =
∞∑

d=x+1

(
d− x

)
pd

=
∞∑

d=x+1

dpd −
∞∑

d=x+1

xpd

=
∞∑

d=x+1

d
θde−θ

d!
− x

∞∑
d=x+1

pd

= θ
∞∑

d=x+1

θd−1e−θ

(d− 1)!
− xqx+1

= θ

∞∑
d=x+1

pd−1 − xqx+1

= θ

∞∑
d=x

pd − xqx+1

= θ(qx)− x(qx − px)

= qx(θ − x) + xpx

The full implementation is provided in the following.

1 package examples . jmdp ;
2
3 import jmarkov . ba s i c . Act ions ;
4 import jmarkov . ba s i c . Act ionsSet ;
5 import jmarkov . ba s i c . S ta t e s ;
6 import jmarkov . ba s i c . S ta t e sSe t ;
7 import jmarkov . ba s i c . except i ons . So lverExcept ion ;
8 import jmarkov . jmdp .DTMDP;
9 import jmarkov . jmdp . s o l v e r s . P o l i c y I t e r a t i o n S o l v e r ;

10 import jmarkov . jmdp . s o l v e r s . R e l a t i v e V a l u e I t e r a t i o n S o l v e r ;
11 import jmarkov . jmdp . s o l v e r s . Va lu e I t e r a t i onSo l v e r ;
12 import Jama . Matrix ;
13
14 /∗∗
15 ∗ This problem i s a s i n g l e item , per iod ic review , s t o c h a s t i c demand inventory

21



16 ∗ problem . I t i s modeled l i k e a discounted cost , i n f i n i t e horizon , Markov
17 ∗ Decision Problem . Demand i s assumed to be random according to a Poisson
18 ∗ Process d i s t r i b u t i o n with given rate per period . The system i s a per iod ic
19 ∗ review problem in which an e n t i t y p e r i o d i c a l l y checks the inventory l e v e l and
20 ∗ takes dec i s ions according to the s t a t e s he f i n d s . There i s a pr ice of s e l l i n g
21 ∗ each item and a cos t for buying i t . Besides , there i s a ho ld ing cos t incurred
22 ∗ when hold ing one item in stock from one period to another . There i s a l so a
23 ∗ truckCost ordering cos t independent of the s i z e of the order placed . The
24 ∗ o b j e c t i v e i s to minimize the expected discounted long run cos t .
25 ∗
26 ∗ @author Germán Riaño and Andres Sarmiento − Universidad de Los Andes
27 ∗/
28 public c lass InfStochasticDemand extends DTMDP<InvLevel , Order> {
29 //TODO This example needs more s p e c i f i c documentation .
30 // Problem parameters :
31 private int maxInv , maxBO, t ruckS i z e ;
32 // Cost and demand parameters :
33 private double truckCost , backorderCost , holdingCost , intRate , expDemand ,
34 pr i ce , co s t ;
35 private double [ ] demPMF, demCDF, demandLoss1 ;
36 private boolean i s d i s c = fa l se ;
37
38 // demPMF[ i ] = P{Demand = i }
39 // demCDF[ i ] = P{Demand <= i }
40 // demandLoss1 [ i ] = E[ (Demand − i )ˆ+ ]
41 // Constructor
42
43 /∗∗
44 ∗ @param maxInv
45 ∗ maximum phys i ca l capaci ty in inventory , warehouse s i z e .
46 ∗ @param maxBO
47 ∗ maximum backorders al lowed
48 ∗ @param truckS i ze
49 ∗ maximum items in each f i x e d cos t order . Orders can be greater
50 ∗ than t h i s value , but w i l l be charged more than one f i x e d cos t .
51 ∗ @param truckCost
52 ∗ f i x e d cos t per order
53 ∗ @param backorderCost
54 ∗ unit cos t per backordered item per s tage
55 ∗ @param price
56 ∗ unit pr ice
57 ∗ @param cost
58 ∗ unit aqu i s t ion costo
59 ∗ @param holdingCost
60 ∗ non−f i n a n t i a l ho ld ing cos t ( i t does NOT inc lude f i n a n t i a l
61 ∗ cos t )
62 ∗ @param intRate
63 ∗ i n t e r e s t per period
64 ∗ @param expDemand
65 ∗ demand mean
66 ∗ @param discounted
67 ∗ Whether a discounted model ( rather than average ) i s to be
68 ∗ used .
69 ∗/
70
71 @SuppressWarnings ( ”unchecked” )
72 public InfStochasticDemand ( int maxInv , int maxBO, int t ruckS ize ,
73 double truckCost , double backorderCost , double pr i ce , double cost ,
74 double holdingCost , double intRate , double expDemand ,
75 boolean discounted ) {
76 super (new StatesSet<InvLevel >(new InvLevel ( 0 ) ) ) ;
77 this . maxInv = maxInv ;
78 this .maxBO = maxBO;
79 this . t ru ckS i z e = t ruckS i z e ;
80 this . truckCost = truckCost ;
81 this . backorderCost = backorderCost ;
82 this . p r i c e = p r i c e ;
83 this . c o s t = cos t ;
84 this . ho ld ingCost = holdingCost ;
85 this . expDemand = expDemand ;
86 // i n i t S t a t e s ( ) ;
87 i n i t i a l i z e P r o b a b i l i t i e s ( ) ;
88 this . i s d i s c = discounted ;
89 this . intRate = intRate ;
90 i f ( d i scounted )
91 s e t S o l v e r (new Va lue I t e r a t i onSo l v e r ( this , intRate ) ) ;
92 else
93 s e t S o l v e r (new R e l a t i v e V a l u e I t e r a t i o n S o l v e r ( this ) ) ;
94 }
95
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96 private void i n i t i a l i z e P r o b a b i l i t i e s ( ) {
97 demPMF = new double [ maxInv + maxBO + 1 ] ;
98 demCDF = new double [ maxInv + maxBO + 1 ] ;
99 demandLoss1 = new double [ maxInv + maxBO + 1 ] ;

100 double cdf , p = Math . exp(−expDemand ) ;
101 cdf = demCDF[ 0 ] = demPMF[ 0 ] = p ;
102 demandLoss1 [ 0 ] = expDemand ;
103 int maxlevel = maxInv + maxBO;
104 for ( int i = 1 ; i <= maxlevel ; i++) {
105 demPMF[ i ] = (p ∗= expDemand / i ) ; // P{demand = i }
106 demCDF[ i ] = ( cdf += p ) ; // P{demand <= i }
107 demandLoss1 [ i ] = (expDemand − i ) ∗ (1 − cd f ) + expDemand ∗ p ;
108 // = E[ (D−i )ˆ+]
109 }
110 }
111
112 @Override
113 public States<InvLevel> r eachab le ( InvLeve l i , Order a ) {
114 StatesSet<InvLevel> s t a t e s S e t = new StatesSet<InvLevel >() ;
115 // Avai lab l e inventory upon order r e c e i v a l :
116 int maxLevel = i . ge tLeve l ( ) + a . g e tS i z e ( ) ;
117 for ( int n = −maxBO; n <= maxLevel ; n++) {
118 s t a t e s S e t . add (new InvLevel (n ) ) ;
119 }
120 return s t a t e s S e t ;
121 }
122
123 @Override
124 public double prob ( InvLeve l i , InvLeve l j , Order a ) {
125 int i L e v e l = i . ge tLeve l ( ) ;
126 int jL eve l = j . ge tLeve l ( ) ;
127 int o rde rS i z e = a . g e tS i z e ( ) ;
128 // with s tock & demand i s p o s i t i v e & order i s f e a s a b l e
129 int demand = orde rS i z e + i Le ve l − jL eve l ;
130 a s s e r t (demand >= 0 ) ;
131 try {
132 i f ( jLeve l == −maxBO)
133 return 1 .0 − ( ( demand > 0) ? demCDF[ demand − 1 ] : 0 . 0 ) ;
134 else
135 // End up s t o c k l e s s
136 return demPMF[ demand ] ;
137 } catch ( IndexOutOfBoundsException e ) {
138 throw new I l l ega lArgumentExcept ion (
139 ” ’ prob ’ c a l l e d on non−r eachab le s t a t e ! ! . i=” + iL ev e l
140 + ” , j=” + jLeve l + ” , a =” + orderS i ze , e ) ;
141 }
142 }
143
144 @Override
145 public Actions<Order> f e a s i b l e A c t i o n s ( InvLeve l i ) {
146 int max = maxInv − i . g e tLeve l ( ) ;
147 Order [ ] vec = new Order [ max + 1 ] ;
148 for ( int n = 0 ; n <= max ; n++) {
149 vec [ n ] = new Order (n ) ;
150 }
151 return new ActionsSet<Order>(vec ) ;
152 }
153
154 double holdingCost ( int x ) {
155 double totHoldCost = holdingCost + ( ( i s d i s c ) ? intRate ∗ co s t : 0 . 0 ) ;
156 return ( x > 0) ? totHoldCost ∗ x : 0 . 0 ;
157 } // hold ing cos t
158
159 double orderCost ( int x ) {
160 return truckCost ∗ Math . c e i l ( ( double ) x / t ruckS i z e ) + x ∗ co s t ;
161 } // Order cos t
162
163 double backorderCost (double x ) {
164 return ( x < 0) ? −backorderCost ∗ x : 0 . 0 ;
165 }
166
167 // see documentation for the exp lanat ion for t h i s formula
168 @Override
169 public double immediateCost ( InvLeve l i , Order a ) {
170 int maxSale = i . ge tLeve l ( ) + a . g e t S i z e ( ) + maxBO;
171 double expec tedSa l e s = expDemand − demandLoss1 [ maxSale ] ;
172 double n e t P r o f i t = p r i c e ∗ expec tedSa l e s − orderCost ( a . g e tS i z e ( ) )
173 − holdingCost ( i . ge tLeve l ( ) ) − backorderCost ( i . ge tLeve l ( ) ) ;
174 return −n e t P r o f i t ;
175 }
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176
177 /∗∗
178 ∗ Very s tup id method to see what t h i s i s doing ! !
179 ∗/
180 public void pr in tMat r i c e s ( ) {
181 double [ ] [ ] c o s t = new double [maxBO + maxInv + 1 ] [maxBO + maxInv + 1 ] ;
182 double [ ] [ ] [ ] prb = new double [maxBO+maxInv + 1 ] [maxBO+maxInv + 1 ] [maxBO+maxInv + 1 ] ;
183 for ( InvLeve l s : g e t A l l S t a t e s ( ) ) {
184 int i = s . ge tLeve l ( ) ;
185 for ( Order o : f e a s i b l e A c t i o n s ( s ) ) {
186 int a = o . g e tS i z e ( ) ;
187 co s t [ i+maxBO ] [ a ] = immediateCost (new InvLeve l ( i ) , new Order ( a ) ) ;
188 for ( InvLeve l y : r eachab l e ( s , o ) ) {
189 int j = y . ge tLeve l ( ) ;
190 prb [ a ] [ i+maxBO ] [ j+maxBO] = prob (new InvLevel ( i ) , new InvLevel ( j ) ,
191 new Order ( a ) ) ;
192 }
193 }
194 }
195 (new Matrix ( co s t ) ) . p r i n t (8 , 2 ) ;
196 for ( int a = 0 ; a < maxInv ; a++) {
197 (new Matrix ( prb [ a ] ) ) . p r i n t (10 , 6 ) ;
198 }
199 (new Matrix (new double [ ] [ ] { demPMF } ) ) . p r i n t (10 , 6 ) ;
200 (new Matrix (new double [ ] [ ] { demCDF } ) ) . p r i n t (10 , 6 ) ;
201 (new Matrix (new double [ ] [ ] { demandLoss1 } ) ) . p r i n t (10 , 6 ) ;
202 }
203
204 /∗∗
205 ∗ Simple t e s t Program .
206 ∗
207 ∗ @param a
208 ∗ @throws SolverException
209 ∗/
210 public stat ic void main ( St r ing a [ ] ) throws SolverExcept ion {
211 int maxInventory = 25 ;
212 int maxBackorders = 0 ;
213 int t ruckS i z e = 4 ;
214 int truckCost = 1000 ;
215 double b = 0 ; // 1000;
216 double holdCost = 50 ;
217 double intRate = Math . pow ( 1 . 3 , 1 / 5 2 ) ;
218 double theta = 20 ;
219 double p r i c e = 1100 ; // 22000;
220 double co s t = 500 ; // 20000;
221
222 InfStochasticDemand prob = new InfStochasticDemand ( maxInventory ,
223 maxBackorders , t ruckS ize , truckCost , b , pr i ce , cost , holdCost , intRate , theta ,
224 fa l se ) ;
225
226 Re l a t i v eVa lue I t e r a t i onSo l v e r <InvLevel , Order> s o l v = new Re la t i v eVa lue I t e r a t i onSo lv e r <InvLevel , Order>(
227 prob ) ;
228
229 prob . s e t S o l v e r ( s o l v ) ;
230 prob . g e tSo lv e r ( ) . setPr intValueFunct ion ( true ) ;
231 prob . s o l v e ( ) ;
232 prob . p r i n t S o l u t i o n ( ) ;
233
234
235 }
236
237 }

4.4 A step-by-step description of the inventory problem

In this section we present an inventory management example to illustrate the process of modeling
and solving an MDP with the jMDP module of jMarkov. We also show how a user can implement
an MDP model using jMDP and then, due to jMarkov’s flexibility, call this implementation from a
different software program and use a different tool to solve it.
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4.4.1 An inventory management model

Consider the following problem. A car dealership sells only one type of car and uses a weekly
(periodic) inventory review system. Each car is bought at a cost c and sold at a price p. The
dealership must pay a fee K per truck for carrying the cars from the distributor to its location,
and each truck can carry at most L cars. The dealership has a maximum capacity of M cars, and
orders arrive instantly. If a customer places an order and there are no cars available, the sale is
lost. We assume a fixed inventory holding cost of h per car and week. The demands for cars each
week, Dn, are independent, identically distributed Poisson random variables with a mean of λ cars
per week. The objective is to find an optimal ordering policy that maximizes weekly profits.

The problem is an infinite-horizon, discrete-time stochastic decision-making problem, and the
objective is to minimize the long run average cost. The time periods are weeks because the inventory
review occurs weekly. We model it as DTMDP with events, as this description is more natural
than without events (jMDP supports both options). In the following we describe the step-by-step
mathematical modeling process and the implementation in jMDP.

Define the states. Let Xn be the level of physical inventory at the end of week n. The state
space is S = {0, 1, ...,M}. In the code below we declare the class InvLevel, which represents the
state. It extends PropertiesState which is used to represent states as arrays of integers (in this
case the array has only one entry). In line 2 we provide a constructor for the class. In the interest
of space, we will only include key portions of the code. Ellipses (...) indicate that further code is
used; in this case for example, the class includes methods such as getLevel to return the inventory
level.

1 public c lass InvLevel extends Prope r t i e sS ta t e {
2 public InvLevel ( int k ) {super (new int [ ] {k } ) ;}
3 ( . . . ) }

Define the potential actions. Let an represent the size of the order placed at the start of week
n. In the code below we create the class Order, which represents the actions and extends Action.
We define the field size in line 2 to represent the amount ordered, and in line 3 we provide an
appropriate constructor.

1 public c lass Order extends Action {
2 private int s i z e ;
3 Order ( int k ) { s i z e = k ;}
4 ( . . . ) }

Define the events. Here the events are the random demands en that occur each week. Notice
that events occur after action an is taken. The event definition below includes two variables. An
integer d, represents the size of the demand. And a boolean variable greaterThan, which takes
the value “true” if the demand d is greater than or equal to the total inventory Xn−1 + an at the
beginning of the period, and “false” otherwise. Here we extend the class PropertiesEvent, which
represents events as arrays of integers. In lines 3-5 we provide an appropriate constructor.

1 public c lass DemandEvent extends Propert i e sEvent {
2 private boolean greaterThan ;
3 public DemandEvent ( int d , boolean g r ea t e r ) {
4 super (new int [ ] { d } ) ;
5 greaterThan = gr e a t e r ;}
6 ( . . . ) }

Define the MDP. This is a DTMDP, therefore we extend the class DTMDPev. When extending
this class, we use the corresponding classes that represent the states, actions and events. In our
example, InvLevel, Order and DemandEvent represent the states, actions, and events, respectively.
In the following code CarDealerProblem is the class representing the problem, and it includes fields,
not shown for brevity, for each problem parameter, namely maxInventory, truckSize, fixedCost,
lambda, price, cost, holdCost, and truckCost.
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1 public c lass CarDealerProblem extends DTMDPEv<InvLevel , Order , DemandEvent> { ( . . . ) }

Define the feasible actions. For each state i the feasible actions are those that do not exceed
the dealership’s capacity. The maximum feasible order in state i is thus M − i, an amount that we
calculate in line 2 in the code below, and the feasible set of actions is A(i) = {0, . . . ,M − i}. The
method feasibleActions receives the state i as a parameter. In line 3 we create an empty set of
actions. In the loop in lines 4-6 we add each of these actions to the set.

1 public Actions<Order> f e a s i b l e A c t i o n s ( InvLeve l i ){
2 int max = maxInventory − i . g e tLeve l ( ) ;
3 ActionsSet<Order> ac t i onSe t = new ActionsSet<Order >() ;
4 for ( int n = 0 ; n <= max ; n++){
5 ac t i onSe t . add (new Order (n ) ) ;
6 }
7 return ac t i onSe t ;}

Define the active events. For each state i, and given that action a is taken, we have to define the
events that can occur. For example, the zero-demand event is active in every state, while a demand
equal to i + a is indistinguishable from larger demands as it empties the available inventory. We
define the method activeEvents, which starts by creating an empty set of events eventSet in line
2, to which we add the active events. Since each event is defined by both the amount demanded
and the boolean greaterThan indicating whether the demand empties the inventory or not, we
specify each event with these two parameters. In line 3 we add the event where the demand is at
least equal to i+ a and greaterThan is true. The loop in lines 4-6 adds events where the demands
is less than i+ a, and set greaterThan to false as the inventory remains positive after the demand
event.

1 public Events<DemandEvent> act iveEvents ( InvLeve l i , Order a ) {
2 EventsSet<DemandEvent> eventSet = new EventsSet<DemandEvent>() ;
3 eventSet . add (new DemandEvent ( i . ge tLeve l ( ) + a . g e tS i z e ( ) , true ) ) ;
4 for ( int n = 0 ; n < i . g e tLeve l ( ) + a . g e t S i z e ( ) ; n++) {
5 eventSet . add (new DemandEvent (n , fa l se ) ) ;
6 }
7 return eventSet ;}

Define the set of reachable states Here we define the states that the MDP can transition to from
state i, given that action a is taken and event e occurs. In the method reachable, displayed below,
we create a new set of states in line 2. If the demand event is greater than (i+ a) the new state is
0, as depicted in line 4. Otherwise, if the demand is d, the only reachable state is (i + a − d), as
set in line 6.

1 public States<InvLevel> r eachab l e ( InvLeve l i , Order a , DemandEvent e ) {
2 StatesSet<InvLevel> s tSe t = new StatesSet<InvLevel >() ;
3 i f ( e . getGreaterThan ( ) )
4 s tSe t . add (new InvLevel ( 0 ) ) ;
5 else
6 s tSe t . add (new InvLevel ( i . ge tLeve l ( ) + a . g e t S i z e ( ) − e . getDemand ( ) ) ) ;
7 return s tSe t ;}

Define the event probabilities. We condition on the event d < i + a. The probability of going
from state i to a reachable state j when action a is taken is given by

pij(a) =


P{Dn = d} if j = i+ a− d, d < i+ a,
P{Dn ≥ i+ a} if j = 0, d ≥ i+ a,
0 otherwise.

(7)

In the code below, demCCDF denotes the cumulative distribution function of the demand, and demPMF

its probability mass function. These values have been previously generated and correspond to a
Poisson distribution. The condition in line 2 is equivalent to the second case in (7), while the
complementary case in line 4 is equivalent to the first case in (7).
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1 public double prob ( InvLeve l i , DemandEvent e ) {
2 i f ( e . getGreaterThan ( ) )
3 return demCCDF[ e . getDemand ( ) ] ;
4 return demPMF[ e . getDemand ( ) ] ; }

Define the immediate cost As jMDP assumes a minimization objective function, we minimize the
negative of the net profit, defined in the method immediateCost in the code below. The profit has
three major components. First, the revenues, which are calculated as the selling price times the
expected sales p × (E[Dn] − LDn [i + a]), where LDn is the first-order loss function of the demand
distribution [?]. The expected sales are calculated in lines 2 and 3 of the code below. Second, the
ordering cost includes a charge per truck and a charge per car, and when the truck is only partially
occupied the whole truck is charged, thus it is given by K

⌈
a
L

⌉
+ ca. This cost is computed in lines

7 and 8 below. Third, the holding cost, which depends only on the state and is charged only when
the stock is positive. Hence, it can be calculated as h × i. The immediate cost is therefore given
by:

c(i, a) = −
(
p× (E[Dn]− LDn [i+ a])−K

⌈ a
L

⌉
− c× a− h× i

)
as calculated in lines 4 and 5 below.

1 public double immediateCost ( InvLeve l i , Order a ) {
2 int maxSale = i . ge tLeve l ( ) + a . g e tS i z e ( ) ;
3 double expec tedSa l e s = expDemand − demandLoss1 [ maxSale ] ;
4 double n e t P r o f i t = p r i c e ∗ expec tedSa l e s − orderCost ( a . g e tS i z e ())− holdCost∗ i . g e tLeve l ( ) ;
5 return −n e t P r o f i t ;
6 }
7 double orderCost ( int x ) {
8 return truckCost ∗ Math . c e i l ( ( double ) x / t ruckS i z e ) + x ∗ co s t ;}

Generate and solve the model. In this method we set the values of the parameters to define
a specific instance of the problem. As an example, the values of the parameters for this instance
are M = 10, L = 4, λ = 9, p = 1100, c = 500, h = 50, K = 1000, which are set in lines 2 and
3 below. In the next lines we generate an instance of the problem with the given parameters and
solve it. This is where the state-space search algorithm is executed to build the whole state space
S. Finally, we call the solver, and print the solution. We use the default Relative Value Iteration
Algorithm, the solver takes the model object as input.

1 public stat ic void main ( St r ing a [ ] ) throws SolverExcept ion {
2 int maxInventory = 10 ; int t ruckS i z e = 4 ; double lambda = 9 ; double p r i c e = 1100 ;
3 double co s t = 500 ; double holdCost = 50 ; int truckCost = 1000 ;
4 CarDealerProblem prob = new CarDealerProblem ( maxInventory , t ruckS ize , f ixedCost ,
5 lambda , pr i ce , cost , holdCost , truckCost ) ;
6 prob . s o l v e ( ) ;
7 prob . p r i n t S o l u t i o n ( ) ;
8 }

The results for this problem are stored as a Solution object, and the last line above prints the
following optimal policy.

1 STATE ------> ACTION

2 LEVEL 0 ------> ORDER 8 UNITS

3 LEVEL 1 ------> ORDER 8 UNITS

4 LEVEL 2 ------> ORDER 8 UNITS

5 LEVEL 3 ------> ORDER 7 UNITS

6 LEVEL 4 ------> ORDER 4 UNITS

7 (...)

This policy contains the optimal action to be taken in each possible state. For instance, if the
current inventory level is 4 then it is optimal to order 4 cars. This example can be found in [?]. In
fact, a finite horizon variation of this example is included as a one of the jUnit tests used to test
the framework for correctness.
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4.4.2 Modeling with jMarkov and solving with another tool

The flexibility of jMarkov, coupled with the fact that it is implemented in Java, provides the user
with multiple alternatives for solving larger problems. The user can choose to model and solve the
problem using only jMDP as in the previous section. Alternatively, the user can build the model
with jMDP, exploiting the modeling capabilities of the module, and then use a different tool for the
solution step. This option can be carried out in three ways: (i) by generating the model in jMDP,
exporting the parameters and then importing them to another tool; or, (ii) by writing a solver
class in Java using the jMarkov framework, which invokes the desired solver tool (this is the way
LP solvers work in jMDP); or, (iii) by importing a model constructed with jMDP into another tool
in order to solve it. In Section ?? we followed the third option to use SMCSolver in MATLAB to
solve a QBD model built with jMarkov. Here we follow a similar procedure to import the jMDP

model developed in the previous section into MATLAB and use MDPtoolbox [?] to solve it.
The code below shows how to import a jMDP model into MATLAB and use the functions

provided by MDPtoolbox to find a solution. Line 1 imports the model class CarDealerProblem,
which we described in detail in Section 4.4.1. Lines 3 and 4 define the model parameters, and Line
6 creates the model object. Lines 7 and 8 generate the model parameters that the MDPtoolbox
solver uses as input. Specifically, the method getTheP generates a 3-dimensional array of transition
probabilities pij(a), whereas the method getTheR generates a matrix of immediate costs c(i, a).
Notice that the cost matrix is multiplied by −1 because the default setting of MDPtoolbox is
maximization, while the costs are calculated for a minimization problem. Finally, line 10 calls one
of the MDPtoolbox solver functions to solve the problem and return the optimal policy, long-run
average cost and solution time.

1 import examples . jmdp . CarDealerProblem ;
2
3 maxInventory = 10 ; t ruckS i z e = 4 ; lambda = 7 . 0 ; truckCost = 8 0 0 . 0 ;
4 p r i c e = 1100 . 0 ; co s t = 5 0 0 . 0 ; holdCost = 5 0 . 0 ;
5
6 model=CarDealerProblem ( maxInventory , t ruckS ize , truckCost , pr i ce , cost , holdCost , lambda ) ;
7 P=model . getTheP ( ) ;
8 R=−1∗model . getTheR ( ) ;
9

10 [ po l i cy , cost , cpu time ] = m d p r e l a t i v e v a l u e i t e r a t i o n (P, R) ;

This example illustrates how the modeling capabilities of jMarkov can be exploited to build a
complex model using events and to solve it with a tool that does not support MDP models with
events. But, because jMDP automatically converts the event-dependent model into a DTMDP
without events and automatically calculates the non-event-dependent version of the parameters,
the process is completely seamless for the user. This could not have been achieved without jMarkov.
If the user only had MDPtoolbox available, she would have had to manually generate the parameters
for the MDP with events and transform it into a DTMDP without events in order to solve it.

5 Advanced Features

The sections above were intended to show an easy way to use JMDP. The package has some more
features that make it more flexible and powerful than what was shown above. This section is
intended for users that are already familiar with the previous sections and want to customize the
framework according to their specific needs.
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5.1 States and Actions

The public abstract class State implements Comparable<State> is declared as an abstract class. As an abstract
class it may not be used directly but must be extended. Abstract classes can’t be used directly and
must be extended.

This class implements Comparable, which implies that objects of type State have some criterion of
order. By default the order mechanism is to order the States according to the String name property.
This is the most general case because allows states such as ”‘Active”’ or ”‘Busy”’ that don’t have
any numerical properties. It is not efficent to organize states in such a way because comparing
Strings is very slow; but this is flexible. In many cases it will be easier to represent the system state
by a vector (i1, i2, . . . , iK) of integers. In this case, it is more efficient to compare states according
to this vector. The class StateArray is an extension of State that has a field called int [] status. This
class changes the Comparable implementation to order the states accorging to status. This is also an
abstract class and must also be extended to be used.

When State objects have to be grouped, for example when the reachable method must return a set
of reachable states, the States<S> structure is the one that handles this operation. This class is also
an abstract class and implements Iterable<S>. There is no restriction on how the user can store the
State objects as long as Iterable<S> is implemented and an public void add(S s) method is implemented.
This means the user can use an array, a list, a set or any other structures. For beginner users,
the class StatesCollection<S> was built to make a faster and easier way to store the State objects. The
StatesCollection<S> class extends States and organizes the objects in a Set from the java. util . Collections.

It is important to use the generics in a safe mode in the States object and its extensions. The class
is declared as abstract public class States<S extends State> implements Iterable<S>. This means that Every
time a States object is declared, it must specify the type of objects stored in it. For example:
States<MyState> theSet = new StatesCollection<MyState>(); is the right way to ensure that only objects of type
MyState are stored in the object theSet. This also makes the iterator that the class returns, to iterate
over MyState objects.

The behavior of class Action is completely analogous to that of class State. The class is abstract
and must be extended to be used. The default criterion of ordering is alphabetical order of the name

attribute. But there is an ActionArray that can have an integer array stored as properties representing
the action. This objects compare themselves according to the array instead of the name. The set of
actions is called Actions<A extends Action> implements Iterable<A>. This class does not need to have the add

method implemented, but works analogously to class States<S>. For simplicity, class ActionsCollection<A>

stores the objects in a Set from java. util . Collections.

5.2 Decision Rules and Policies

The deterministic decision rules πt as referred in the MDP mathematical model, are functions
that assign a single action to each state. The computational object representing a decision rule
is public final class DecisionRule<S extends State, A extends Action>. Probably the most common method used
by a final user will be public A getAction(S i) which returns the Action assigned to a State. Remem-
ber the generics structure where State and Action are only abstract classes. An example would be:
MyAction a = myDecisionR.getAction(new MyState(s));, where only extensions of State and Action are being used.

Non stationary problems that handle various stages use a policy π = (π1, π2, . . . , πT ) that
is represented by the object public final class Policy<S extends State, A extends Action>. A Policy stores a
DecisionRule for each stage. It may be useful to get the action assigned to a state in a particu-
lar stage using the method public A getAction(S i, int t) that used with generics could look like this:
MyAction a = pol.getAction(new Mystate(s), 0); where again State and Action are only abstract classes that are

29



not used explicitly.

5.3 MDP class

The MDP class is the essence of the problem modeling. This class is extended in order to represent a
Markov decision process or a dynamic programming problem. For each type of problem, a different
extension of class MDP must be extended (See table 2). Remember always to indicate the name of
the objects that represent the states and the actions extending State and Action respectively; these
are indicated as <S> and <A> in the class declaration.

When declaring a new class public class MyProblem extends FiniteMDP<MyState,MyAction>, various compi-
lation errors pop up. This doesn’t mean that something was done wrong, it is just to remember
the user that some methods must be implemented for the problem to be completely modeled. A
summary of the methods is shown on table (7).

Class Abstract Methods

FiniteDP<S,A> public abstract Actions<A> getActions(S i, int t)

public abstract S destination(S i, A a, int t)

public abstract double immediateCost(S i, A a, int t)

FiniteMDP<S,A> public abstract Actions<A> getActions(S i, int t)

public abstract States<S> reachable(S i, A a, int t)

public abstract double prob(S i, S j, A a, int t)

public abstract double immediateCost(S i, A a, int t)

InfiniteMDP<S,A> public abstract Actions<A> getActions(S i)

public abstract States<S> reachable(S i, A a)

public abstract double prob(S i, S j, A a)

public abstract double immediateCost(S i, A a)

Table 7: Abstract methods.

5.4 Solver classes

The Solver class is a very general abstract class. It requires the implementing class to have a
public void solve() method that reaches a policy that is optimal for the desired problem, and stores
this policy in the Policy <S,A> policy field inside the problem. The current package has a dynamic
programming solver called FiniteSolver, a value iteration solver and a policy iteration solver. The three
of them have convenience methods printSolution() that allow the user to print the solution in standard
output or to a given PrintWriter. For larger models the user might not want to see the solution in
the screen, but rather extract all the information through getOptimalPolicy(), and getOptimalValueFunction()

methods.

5.4.1 FiniteSolver

The public class FiniteSolver<S extends State, A extends Action> extends AbstractFiniteSolver is intended to solve only
finite horizon problems. The constructors public FiniteSolver(FiniteMDP<S,A> problem) only receive prob-
lems modeled with FiniteMDP (or FiniteDP) classes, implying that only finite horizon problems can
be solved. The objective function is to minimize the total cost presented in equation (1), in the
mathematical model.
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5.4.2 ValueIterationSolver

The public class ValueIterationSolver<S extends State, A extends Action> implements Solver is the solver class that
maximizes the discounted cost vπα presented in equation (3) on the mathematical model. The con-
structor only receives InfiniteMDP<S,A> objects as a problem parameter as shown in public ValueIterationSolver(InfiniteMDP<S,A> problem, double discountFactor).
This shows the class in only intended to solve infinite horizon, discounted problems.

The algorithm used to solve the problem is the value iteration algorithm that consists on
applying the transformation described on equation (4) repeatedly until the results are ε apart. It
can be proved (see Stidham[6]) that the result will be ε-optimal. The value functions start in 0.0
by default, but this default can be changed using public void setInitVal(double val), and this may speed
up the convergence of the algorithm. The ε is also an important criterion for the speed convergence
and may be changed from its default value in 0.0001, using public void setEpsilon(double epsilon); a bigger
ε will speed up convergence but will make the approximation less accurate.

The Gauss-Seidel modification presented by Bertsekas[2] is used by default and may be deacti-
vated using public void setGaussSeidel(boolean val). This modification will cause the algorithm to make less
iterations because the value function v(i) is changing faster than without the modification. It is also
possible to activate the Error Bounds modification presented by Bertsekas[2], that is deactivated
by default. This modification changes the stopping criterion and makes each iteration faster.

Finally, it is possible to print the final value function for each state on screen using the
public void setPrintValueFunction(boolean val) method. In some cases, for comparison purposes, it may
be useful to be able to see the time it took the algorithm to solve the problem by activating
public void setPrintProcessTime(boolean val). The two last options are deactivated by default.

5.4.3 PolicyIterationSolver

The public class PolicyIterationSolver is also designed to solve only infinite horizon problems and this is re-
stricted in the arguments of its constructor public PolicyIterationSolver(InfiniteMDP<S,A> problem, double discountFactor)

that only receives InfiniteMDP<S,A> objects as an argument. This solver maximizes the discounted cost

DRv
π presented in equation (3) on the mathematical model. The solver uses the policy iteration

algorithm. This algorithm has a step in which a linear system of equation needs to be solved, so
the JMP[3] package is used. This class also allows to print the final value function for each state on
screen using the public void setPrintValueFunction(boolean val) method. The solving time can be shown by
activating public void setPrintProcessTime(boolean val). These two last options are deactivated by default.

6 Further Development

This project is currently under development, and therefore we appreciate all the feedback we can
receive.
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