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1 Introduction

The main purpose of jMarkov is facilitating the development and application of large scale Marko-
vian models, so that they can be used by engineers with basic programming and stochastic modeling
skills.

The project is composed of four modules: jMarkov, jQBD, jPhase, and jMDP. This focuses on
jMarkov and jQBD, which are used to build Markov Chains and Quasi-Birth and death processes
(QBD). The other two modules have their own manuals.

With jPhase a user can easily manipulate Phase-Type distributions (PH). These distributions
are quite flexible and powerful, and a model that is limited to PH in practical terms can model
many situations. For details see |9] and [g].

jMDP is used to build and solve Markov Decision Process (MDP). MDP, or, as is often called,
Probabilistic Dynamic Programming allows the analyst to design optimal control rules for a Markov
Chain.jMDP works for discrete and continuous time MDPs. For details see [12] and [11]

For up-to date information, downloads and examples check jMarkov’s website at https://
projects.coin-or.org/jMarkov/.

2 Building Large - Scale Markov Chains

In this section, we will describe the basic algorithms used by jMarkov to build Markov Chains.
Although we limit our description to Continuous Time Markov Chain (CTMC), jMarkov can handle
also Discrete Time Markov Chains (DTMC).
Let {X(t),t > 0} be a CTMC, with finite space state S and generator matrix Q, with compo-
nents
0y =lim P {X() =j|X(0) =i} ij€S.

It is well known that this generator matrix, along with the initial conditions, completely determines
the transient and stationary behavior of the Markov Chain (see, e.g, [5]). The diagonal components
¢i; are non-positive and represent the exponential holding rate for state 7, whereas the off diagonal
elements g;; represent the transition rate from state i to state j.

The transient behavior of the system is described by the matrix P(¢) with components

pij(t) = P{X(t+s)=j|X(s) =1} 4,j€S.
This matrix can be computed as
P(t) =¥ t>0.

For an irreducible chain, the stationary distribution 7 = [71, 7o, .. .,] is determined as the solution
to the following system of equations

Q=0
wl=1,

where 1 is a column vector of ones.

2.1 Space state building algorithm

Transitions in a CTMC are triggered by the occurrence of events such as arrivals and departures.
The matrix Q can be decomposed as Q = ) ¢ Q). where Q(© contains the transition rates
associated with event e, and £ is the set of all possible events that may occur. In large systems, it
is not easy to know in advance how many states there are in the model. However, it is possible to
determine what events occur in every state, and the destination states produced by each transition
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when it occurs. jMarkov works based on this observation, using an algorithm similar to the algo-
rithm buildRS presented by Ciardo [1]; see Figure [I} The algorithm builds the space state and the
transition rate by a deep exploration of the graph. It starts with an initial state ip and searches for
all other states. At every instant, it keeps a set of “unchecked” states U and the set of states S that
have been already checked. For every unchecked state the algorithm finds the possible destinations
and, if they had not been previously found, they are added to the U set. To do this, it first calls
the function active that determines if an event can occur. If it does, then the possible destination
states are found by calling the function dests . The transition rate is determined by calling the
function rate . From this algorithm, we can see that a system is fully described once the states
and events are defined and the functions active, dests, and rate have been specified. As we will
see, modeling a problem with jMarkov entails coding these three functions.

S =0,U = {ig}, € given.
while U # ¢ do
for all e € £ do
if active(i,e) then
D := dests(i,e)
for all j € D do
if j ¢ SUU then
U:=Uuij}
end if
Rij = Rij + rate(i,j, 6)
end for
end if
end for
end while

Figure 1: BuildRS algorithm

2.2 Measures of Performance

When studying Markovian systems, the analyst is usually interested in the transient and steady
state behavior of measures of performance (MOPs). This is accomplished by attaching rewards to
the model. Let r be a column vector such that (i) represents the expected rate at which the system
receives rewards whenever it is in state ¢ € S. Here the term reward is used for any measure of
performance that might be of interest, not necessarily monetary. For example, in queueing systems
r(7) might represent the number of entities in the system,or the number of busy servers, when the
state is 7. The expected reward rate at time ¢ is computed according to

E(r(X(t)) = aP(t)r,

where the row vector a has the initial conditions of the process (i.e., a; = P{X(0) =i},i € S).
Similarly, for an irreducible CTMC, the long run rate at which the system receives rewards is
calculated as .
1
lim — [ E(r(X(s))ds = mr.
As we will see, jMarkov provides mechanisms to define this type of rewards and can compute both,
transient and steady state MOPs. There are other type of rewards, like expected time in the system,

which can be easily computed using Little law.



Build Package H Basics Package ‘ ’ Solvers Package

» JMarkovElement = Solver
» MarkovProcess * PropertiesElement = SteadyStateSolver
 SimpleMarkovProcess * Event = GeometrixtSolver
* GeomProcess * PropertiesEvent = TransientSolver
« State = JamasSolver
* GeomState = JamaTransientSolver
* GeomRelState = MtjSolver
* PropertiesState = MtjLogRedSolver

Figure 2: Class classification

3 Framework Design

In this section, we give a brief description of jMarkov’s framework architecture. We start by de-
scribing object-oriented programming and then describe the three packages that compose jMarkov.

3.1 Java and Object Oriented Programming

Java is a programming language created by Sun Microsystems [13]. The main characteristics that
Sun intended to have in Java are: Object-Oriented, robust, secure, architecture neutral, portable,
high performance, interpreted, threaded and dynamic.

Object-Oriented Programming (OOP) is not a new idea. However, it did not have an increased
development until recently. OOP is based on four key principles: abstraction, encapsulation,
inheritance and polymorphism. An excellent explanation of OOP and the Java programming
language can be found in [14].

The abstraction capability is the one that interests us most. Java allows us to define abstract
types like MarkovProcess, State, etc. We can also define abstract functions like active, and
dests. We can program the algorithm in terms of these abstract objects and functions and the
program works independently of the particular implementation of the aforementioned elements. All
the user has to do is to implement the abstract functions. What is particularly nice is that if a
function is declared as abstract, then the compiler itself will force the user to implement it before
she attempts to run the model.

3.2 Build Package

The build package is the main one in jMarkov since it contains the classes that take care of building
the state space and transition matrices. The main classes are MarkovProcess, SimpleMarkovPro-
cess, and GeomProcess (see Figure . Whereas the first two allow to model general Markov
processes, GeomProcess is used for Quasi-Birth and Death Processes (QBD) and its description is
given in Section [5.3] below.

The class SimpleMarkovProcess represents a Markov chain process, and contains three abstract
methods that implement the three aforementioned functions in the algorithm BuildRS: active,
dests, and rate. In order to model a problem the user has to extend this class and implement the
three functions. An example is given in Section The class MarkovProcess is the main class in
the module, and provides a more general mechanism to describe the dynamics of the system. It also
contains tools to communicate with the solvers to compute steady state and transient solutions,
and print them in a diverse array of ways. For details, see [10].

3.3 Basic Package

This package contains the building blocks needed to describe a Markov Chain. It contains classes
such as State, and Event, which allow the user to code a description of the states and events,



MarkovProcess

SimpleMarkovProcess

GeomProcess

respectively (see Figure. The user has freedom to choose any particular coding that best describes
the states in her model, like any combination of integers, strings, etc. However, she must establish
a complete ordering among the elements since, for efficiency, jMarkov works with ordered sets. For
simplicity, however, a built-in class is provided, called PropertiesState, that describes the state
with an array of integers, something which is quite appropriate for many applications. Similarly,
there is an analogous class called PropertiesEvent. The package also contains the classes States
and Events that are used to describe collections of states and events. These are fairly general
classes, since all that is required from the user is to provide a mechanism to “walk through” the
elements of the set, taking advantage of Java iterator mechanism. This implies that, for large sets,
there is no need to generate (and store) all the elements in the set. For convenience, the package

Figure 3: Class diagram build module

provides implementations of these set classes based on sorted sets classes available in Java.

<<Interface>>
JMarkovElement

<<Interface>>
PropertiesElement

GeomState

GeomRelState

PropertiesState

PropertiesEvent

Figure 4: Class diagram for the basic package




3.4 The Solvers Package

As stated above, jMarkov separates modeling from solving. Various solvers are provided to find
steady-state and transient probabilities (see Figure |5). If the user does not specify the solver to
use, one is provided by default. However, the architecture is flexible enough to allow an interested
user to choose a different solver, or, if she desires, to implement her own. The basic class is called
Solver, that has two sub-classes called SteadyStateSolver, TransientSolver, and GeomSolver
(see Figure . As the names indicate, the first two provide solvers for steady state and transient
probabilities, whereas the latter is used for QBDs, as explained in section [5} The implementations
provided relay on two popular Java packages to handle matrix operations JAMA [3] and MTJ [2],
for dense and sparse matrices, respectively.

Solver

A

TransientSolver SteadyStateSolver GeometrixtSolver

JamaTransientSolver JamaSolver MtjSolver MtjLogRedSolver

Figure 5: Class diagram of the solvers package

4 Examples

4.1 Example: An M/M/2/N with different servers

Assume that a system has Poisson arrivals with rate A. There are two exponential servers with
rates p1 and ps respectively. There is a maximum of N customers in the system. An arriving
customer that finds the system empty will go to server 1 with probability a. Otherwise he will pick
he first available server, or join a single FCFS queue. If there are N in the system the customer
goes away.

4.1.1 The model

We model this system with the triple X(¢) = (X(¢),Y (t), Z(t)), where X (¢) and Y () represents
the status of the server (1 if busy 0 otherwise) and Z(t) represents the number in queue, which is
a number from 0 to NV — 2. There are 2 x 2 x N — 2 potential states, however not all combinations
of X,Y and Z are possible. For example the state (0, 1,2) is not acceptable since we assume that
a server will not be idle if there are people in the queue. The set of states will be of the form

S ={(0,0,0),(0,1,0),(1,0,0} U{(1,1,k) : k=0,1,...,N — 2}

The transition matrix will have the form
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4.1.2 Class QueueMM2dNState

Our characterization of each state fits nicely as a particular case of the PropertiesState class with
three properties. Since we decided to work with numbered events rather than extending the Event
class, we should implement the SimpleMarkovClass. In the following code you will see how we
first model the State with the class QueueMM2dNState and then model the system implementing
the class QueueMM2dN. These two class are placed in the same file QueueMM2dN, but they could
be placed in separate files.

To model the State we begin by creating a constructor that assigns x, y, and z to the properties.
We provide methods to access the three properties and a method to check whether the system is
empty. We also implement the method label to override the one in the class PropertiesState.

4.1.3 Class QueueMM2dN

There are two basic events that can occur: arrivals and service completions. We have to distinguish,
however two types of service completions depending on whether the server that finishes is 1 or 2.
Also, when the system is empty we have to distinguish between arrivals that go to server 1 and
those that go to server 2. So in total we have five events which we number as follows

4.1.4 Code

package examples.jmarkov;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

import jmarkov.MarkovProcess;

import jmarkov.SimpleMarkovProcess;
import jmarkov.basic.Event;

import jmarkov.basic.EventsSet;
import jmarkov.basic.PropertiesState;
import jmarkov.basic.States;

import jmarkov.basic.StatesSet;

ok

* This class represents a system with 2 different exponential

* servers with rates mul and mu2, respectively, and arrival rate
* lambda.

* @author Germdn Riano. Universidad de los Andes.

*/

public class QueueMM2dN extends SimpleMarkovProcess<MM2dNState, QMM2dNEvent> {
// Events
final int ARRIVAL = 0

final int ARRIVAL1 = 1; // only for empty system
final int ARRIVAL2 = 2; // only for empty system
final int DEPARTURELl = 3;
final int DEPARTURE2 = 4;

private double lambda;
private double mul, mu2, alpha;
private int N;




VAT

* Constructs a M/M/2d queue with arrival rate lambda and service
* rates mul and mu 2.

* @param lambda Arrival rate

* @param mul Server 1 rate

* @param mu2 Server 2 rate

* @param alpha Probability of an arriving customer choosing

* server 1 (if both idle)

* @param N Max number in the system

*
u

/
public QueueMM2dN(double lambda, double mul, double mu2, double alpha,
super ((new MM2dNState(0, 0, 0)), //
QMM2dNEvent. get AllEvents () ); // mum Ewvents
this .lambda = lambda;

this.mul = mul;
this . mu2 = mu2;
this.alpha = alpha;
this .N = N;
}
VEE
* Returns an QueueMM2N object with arrival rate 4.0, service rate

* of the first server 2.0, service rate of the second server 3.0,
* probability of choose the first server 0.3 and capacity of 8
* customers in the system. Used by GUI
*/
public QueueMM2dN () {
this (1.0, 2.0, 3.0, 0.3, 8);

}
VEE
* Determines the active events
*
/
public @Override boolean active (MM2dNState i, QMM2dNEvent e) {
boolean result = false;
switch (e.getType()) {
case ARRIVAL:
result = ((i.getQSize() < N — 2) && (!i.isEmpty()));
break;
case ARRIVALL:
result = i.isEmpty ();
break;
case ARRIVAL2:
result = i.isEmpty ();
break;
case DEPARTUREL:
result = (i.getStatusl () > 0);
break;
case DEPARTURE2:
result = (i.getStatus2() > 0);
break;
}
return result;
}

public @Override States<MM2dNState> dests (MM2dNState i, QMM2dNEvent e)
int newx i.getStatusl ();
int newy i.getStatus2 ();
int newz i.getQSize ();

switch (e.getType()) {
case ARRIVAL:
if (i.getStatusl() == 0) {
newx = 1;
} // serv 1 desocupado
else if (i.getStatus2() == 0) {
newy = 1;
} // serv 2 desocupado
else { // ambos ocupados
newz = i.getQSize () + 1;

break;
case ARRIVALL:
newx = 1;
break;
case ARRIVAL2:
newy = 1;
break;
case DEPARTUREL:
if (i.getQSize() != 0) {
newx = 1;
newz = i.getQSize() — 1;
} else {
newx = 0;

int N) {

{




}
break;
case DEPARTURE2:

if (i.getQSize() != 0) {
newy = 1;
newz = i.getQSize() — 1;
} else {
newy = 0;
break;

}

return new StatesSet <MM2dNState>( new MM2dNState(newx, newy, newz));

}

public @Override double rate (MM2dNState i ,MM2dNState j, QMM2dNEvent e) {
double res = 0;
switch (e.getType()) {
case ARRIVAL:
res = lambda;
break;
case ARRIVALL:
res = lambda * alpha;
break;
case ARRIVAL2:
res = lambda * (1 — alpha);
break;
case DEPARTUREL:
res = mul;
break;
case DEPARTURE2:
res = mu?2;
break;
}

return res;

}

@Override
public String description () {
return "M/M/2/N_SYSTEM\nQueueing._System_with_two_servers ,_with_rates.”
4+ mul + ”_and.” 4+ mu2 + 7.\ nArrivals_are_Poisson_with_rate.”
+ lambda + 7 ,\nanduthe_maximum._number.din_.the.dsystem._is_.’7 + N;

}
VEE

* This method just tests the class.
* @param a Not used
*/
public static void main(String[] a) {
String stg;
BufferedReader rdr = new BufferedReader (
new InputStreamReader (System.in));
try {
System.out.println (”Input_rate.”);
stg = rdr.readLine ();
double lda = Double.parseDouble(stg);
System.out.println (7 Service_rate_1_.");
stg = rdr.readLine ();
double mul = Double.parseDouble (stg);
System.out. println (” Service_rate_2_.");
stg = rdr.readLine ();
double mu2 = Double.parseDouble (stg);
System.out.println (” Provide_alpha..”);
stg = rdr.readLine ();
double alpha = Double.parseDouble(stg);
System.out. println ("Max_in_the_system.”);
stg = rdr.readLine ();
int N = Integer.parselnt (stg);
QueueMM2dN theQueue = new QueueMM2dN(lda , mul, mu2, alpha, N);
theQueue .showGUI();
theQueue. printAll ();
} catch (IOException e) {

}
} // class end

Jkok

* This is a particular case of propertiesState, whith three

* properties, nmamely the server 1 and 2 status, plus the queue lewvel.
* @author Germdn Riano. Universidad de los Andes.

*/

class MM2dNState extends PropertiesState {




VEE

* We identify each State with the triplet (z,y,z), where z and y
* are the status of the servers and z the number in queue (0,1,
* .. ,N—2).

*/

MM2dNState(int x, int y, int z) {
super (3); // Creates a PropertiesState with 3 properties.
this.prop[0] X;
this.prop[1]

Y
this.prop[2] Z;

}

@Override
public void computeMOPs(MarkovProcess mp) {

setMOP (mp, ”Status_Server_1”, getStatusl ());

setMOP (mp, ”Status_Server._2”, getStatus2());

setMOP (mp, ”Queue_Length” , getQSize ());

setMOP (mp, ”Number_in_System”, getStatusl () + getStatus2 () + getQSize ());
}

VAL
* Returns the status of the first Server
* @return Status of the first Server
*/
public int getStatusl () {
return prop[0];
}

VEE
* Returns the status of the second Server
* @return Status of the second Server
*/
public int getStatus2 () {
return prop[1];

VAT
* Returns the size of the queue
* @return Status of the size of the queue
*/
public int getQSize () {
return prop[2];
}

Vil
* isEmpty detects 1s the system is empty. It comes handy when
* checking whether the events ARRIVALI and ARRIVAL2 are active.
*
boolean isEmpty () {

return (getStatusl () + getStatus2() + getQSize() == 0);

VEE
* @see jmarkov.basic.State#isConsistent ()
*/
@QOverride
public boolean isConsistent () {
// TODO Complete
return true;

}
/*
x We implement label so that States are labeld 1, 1A, 1B, 2, 3,
* ., N=2
*/
@Override
public String label() {
String stg = 707
if ((getStatusl() == 1) && (getStatus2() == 0))
stg = 71A”;
if ((getStatus2() == 1) && (getStatusl () == 0))
stg = 71B”;
if ((getStatus2() == 1) && (getStatusl () == 1))
stg = 77 + (2 + getQSize());
return stg;
}
Vil
* This method gives a verbal description of the State.
*/
@Override
public String description () {

String stg =

»
3
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stg 4= "Server.l_is.” + ((getStatusl () == 1) ? ”busy” : ”idle”);
stg += 7 ._Server_2_is.” + ((getStatus2() == 1) 7 7busy” : 7idle”);
stg += 7 ._.There_are.” 4 getQSize() + ”"_customers_waiting.in_queue.”;
return stg;

}

class QMM2dNEvent extends Event {
/x% Event types */
public enum Type {
/x% An arrival x/

ARRIVAL,
/x* Arrival to server 1 (only for emtpy system) x/
ARRIVALL,
/*x Arrival to server 2 (only for emtpy system) x/
ARRIVAL2,
/x* departure from server 1 x/
DEPARTUREIL,
/x% departure from server 2 x/
DEPARTURE2;
}
private Type type;
VEE

* @param type

*/
public QMM2dNEvent(Type type) {

super ();
this.type = type;

}
VAT

% @return Returns the type.
*/
public final Type getType() {
return type;
}

VEE

* @return the set of all events.

*

/

public static EventsSet<QMM2dNEvent> getAllEvents ()
EventsSet<QMM2dNEvent> evSet = new EventsSet<QMM2dNEvent> ();
for (Type type : Type.values())

evSet .add (new QMM2dNEvent(type));

return evSet;

}

// Now we define main the class

4.2 Multiple Server Queue

In this example we generalize what we did in the previous example. Assume that a system has
exponential arrivals with exponential arrivals. There are K distinct servers with service rates
W1, 2, .-« i A customer that finds all servers busy joins a single FCFS queue, with capacity
N — K (so there will be at most NV customers in the system). A customer that finds all servers idle
will choose among the idle servers according to relative intensities ay, i.e., he will choose server k

with probability
823

== kel
> ber

Br

where 7 is the set of available servers.

4.2.1 The model

For this model we characterize each state by X (t) = (S(t), Q(t)), where S(t) = (S1(t),...,Sk(t)),
where Si(t) = 1 if k-th server is busy and 0 otherwise. The events that can occur are arrivals
and departures. However we have to distinguish two type of arrivals. If there is no idle server the
arriving customer joins the queue, and we will call this a non-directed arrival. Otherwise we call

11




it a directed arrival. We also make part of the event description the server where the arrival is
directed. In order to represent this event we need a more sophisticated structure, so instead of just
numbering the events we rather extend the class Event, creating an object with two integer fields
(components): the type and the server. Then it is very easy to implement the functions active,
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dest and rate just by querying the values of the type and server associated with the state.

4.2.2 Code

package examples.jmarkov;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

import jmarkov.MarkovProcess;

import jmarkov.SimpleMarkovProcess;
import jmarkov.basic.Event;

import jmarkov.basic.EventsSet;
import jmarkov.basic.PropertiesState;
import jmarkov.basic.States;

import jmarkov.basic.StatesSet;

/

*

This class represents is a system with K different

exponential servers with rates mul, mu2, etc,

respectively , and arrival rate lambda. A customer

that finds more then one server idle chooses according

to relative intensities

<tex tzt="$\alpha_-1, \alpha_-2, \ldots, \alpha-K$”">

alphal, alpha2, etc</tex>. The probability of choosing

idle server k will be given by

<tex tzt="\[\beta_k = \frac{\alpha_k}{\sum_{\ ell\in \cal I} \alpha_{\ell}} 6 \]
where $\ cal I$ is the set of idle servers.”>

alpha (k) / sum( alpha(j)), where the sum is over the set of idle servers.
</tex>

@author Germdn Riano. Universidad de los Andes.

¥ OK K K X K X K K X K ¥ X ¥

*/
public class QueueMMKdN extends SimpleMarkovProcess<QueueMMKdNState, QueueMMKdNEvent> {
// Events

private double lambda;

private double[] mu, alpha;

private int K; // number of servers

private int N;

private static final int NDARRIVAL = QueueMMKdNEvent . NDARRIVAL;
private static final int DIRARRIVAL = QueueMMKdNEvent. DIRARRIVAL;
private static final int DEPARTURE = QueueMMKdNEvent.DEPARTURE;

/o ok
* Constructs a M/M/Kd queue with arrival rate lambda and service
* rates mu, relative probabilities of choosing each server alpha
* @param lambda Arrival rate
* @param mu Server rates
* @param alpha Relative probability of an arriving customer choosing each server.
* @param N Max number in the system
*/
public QueueMMKdN(double lambda, double[] mu, double[] alpha, int N) {
super (
new QueueMMKdNState(mu.length , alpha),
QueueMMKdNEvent. getAllEvents (mu. length ));
this . K = mu.length;
this.lambda = lambda;
this .mu = mu;
this.alpha = alpha;
this . N = Nj;
}
VAT
* Returns an QueueMMKdIN object with arrival rate 1.0,
* service rates of 2.0, 3.0 and 4.0;

and capacity of 8 customers in the system.
Used by GUI

L

public QueueMMKdN () {
this (1.0, new double[]{2,3,4}, new double[]{2,3,4}, 8);
}

/**

* Determines the active events.

*/

12




@Override

public boolean active (QueueMMKdNState i, QueueMMKdNEvent e) {
boolean result = false;
switch (e.type) {

case (NDARRIVAL) : // NDARIVAL occurs only if servers are busy and there

result = (i.allBusy () && (i.getQSize() < N — K));
break;
case (DIRARRIVAL)

result = (i.getStatus(e.server) = 0);
//DirARRIVAL occurs if server is EMPTY.
break;

}
case (DEPARTURE) :
{ // ev.type == DEPARTURE
result = (i.getStatus(e.server) == 1);
//DEPARTURE occurs if server s busy.

}

return result;

}
/%

* Determines the possible destination event (actually one in this case).

*/

@Override
public States<QueueMMKdNState> dests (QueueMMKdNState i, QueueMMKdNEvent e) {
int [] status = new int [K];
for (int k = 0; k < K; k++)
status [k] = i.getStatus(k); //copy current values
int Q = i.getQSize ();
switch (e.type) {
case (NDARRIVAL) :
Q++; // non—directed ARRIVAL
break;
case (DIRARRIVAL)
status[e.server] = 1; //directed ARRIVAL, picks a server.
break;
case (DEPARTURE) :
if (Q> 0) { //there is Queue
status [e.server] = 1; //set (keeps) server busy
Q——; // reduce queue
} else
status [e.server]| = 0; //set server idle

}
return new StatesSet<QueueMMKdNState>(new QueueMMKdNState(status, Q, alpha));

}
/%

* The rate is lambda, or mu for non—directed arrival and for departure.
x For directed arrival rate id lambda 8 prob(server is choosen)
* @see jmarkov.SimpleMarkovProcess#rate (jmarkov. State, jmarkov. State, jmarkov.Event)

*/
@Override
public double rate (QueueMMKdNState i, QueueMMKdNState j, QueueMMKdNEvent e) {
double result = 0;
switch (e.type) {
case (DEPARTURE)
result = mu[e.server];
break;
case (NDARRIVAL)
result = lambda;
break; //non—directed arrival
case (DIRARRIVAL)
result = i.prob(e.server) * lambda;
}
return result;
}
/o k

* Main Method. This asks the wuser for parameters

* and tests the program.
* @param a Not used

*
/
public static void main(String[] a) {
BufferedReader rdr =
new BufferedReader (new InputStreamReader (System.in));
try {
System.out.println (”Input_Rate:.");
double lda = Double.parseDouble (rdr.readLine ());

System.out.println (?"Num_Servers:.”);
int K = Integer.parselnt(rdr.readLine());
double mu[] = new double[K];
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double alpha [] = new double [K];

for (int k = 0; k < K; k++) {
System.out.println (” Service_rate ,_.server.” + (k + 1) + 7o:0.7);
mu[k] = Double.parseDouble(rdr.readLine ());

}

for (int k = 0; k < K; k++) {
System.out.println (

” Choosing_intensity ,_server_.” + (k + 1) + 7.:.7);
alpha[k] = Double.parseDouble(rdr.readLine ());
}
System.out.println ("Max_in_system_:.");

int N = Integer.parselnt(rdr.readLine());
QueueMMKdN theModel = new QueueMMKdN(lda , mu, alpha, N);
theModel .showGUI () ;
//theModel.setDebugLevel (2);
theModel. printAll ();
} catch (IOException e) {
i
}

Ve

* @see jmarkov.SimpleMarkovProcess#description ()

*/

@Override

public String description ()
String stg = "M/M/k/N_SYSTEM\n\n” ;
stg += " Multiple_server._queue_with.” + this . K + ”udifferentuservers\n”;
stg += 7 Arrival _Rate_=.” + lambda + 7 ,_Max_.number_in_system.” + N;
return stg;

}
} //class end
VAT
* This is a particular case of propertiesState, whith K + 1
* properties, nmamely the server 1, 2, ..., K status, plus the queue level.
*
* @author Germdn Riano. Universidad de los Andes.
*/

class QueueMMKdNState extends PropertiesState {

private int K; // number of servers

private double sumProb = —1; // sum of relative probabilities
private double[] alpha; //relative frequency of servers
private double[] beta; //probabilities for this state

Ve

* Constructs a state for an empty system with K servers, and
* choosing intensities alpha.
* @param K Number of servers.
*
QueueMMKdNState (int K, double[] alpha) {
this (new int [K], 0, alpha);
}

/o k

* We identify each State with a wvector that counts the
* ststus fo the k servers and

* the number in queue (0,1, ..,N-K).

*
/
QueueMMKdNState (int [] status, int Qsize, double[] alpha) {
super (alpha.length + 1);
this .K = alpha.length;
this.alpha = alpha;
this.beta = new double [K];

int sum = 0; // adds the number of busy server = people in service
for (int i = 0; i < K; i++) {
prop[i] = status[i];
sum += status[i];
}
prop [K] = Qsize;
}
/o k

* Computes the MOPs
* @see jmarkov.basic. State#computeMOPs( MarkovProcess)
*/
@Override
public void computeMOPs(MarkovProcess mp) {
double sum = 0.0;
for (int i = 0; i < K; i++) {
sum += getStatus (i);
setMOP (mp,” Server._Status.” + (i + 1), getStatus(i));

}
setMOP (mp, ” Queue_Length” , getQSize ());
setMOP (mp, ” Number_in _.System” , sum + getQSize ());
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VEE
* Returns the status of the kth Server
* @param k server index
* @return Status of the kth Server
*/
public int getStatus(int k)
return prop [k];
}

VEE
* Returns the size of the queue
* @return Status of the size of the queue
*/
public int getQSize () {
return prop [K];
}

J*x
* Determines if all servers are busy
* @return True, if all servers are busy. False, otherwise

*/
public boolean allBusy () {
boolean result = true;
for (int k = 0; result && (k < K); k++)
result = result && (getStatus(k) == 1);

return result;
}
VAL
* Determines if all servers are idle

* @return True, if all servers are idle. False, otherwise

*/
public boolean allldle () {
boolean result = true;
for (int k = 0; result && (k < K); k++)
result = result && (getStatus(k) == 0);
return result;
VAL
* @see jmarkov.basic.State#isConsistent ()
*/
@Override

public boolean isConsistent () {
// TODO Complete
return true;

/%
* determines the sum of all intensities for idle servers. The result
* 4s kept in sumProb for future wuse.
*
private double sum() {
if (sumProb != —-1)
return sumProb;
double res = 0;
for (int k = 0; k < K; k++) {
res += (1 — getStatus(k)) * alphalk];

return (sumProb = res);
}
Jkk
* Detemines the probability of an idle server being choosen
* among idle servers. A customer that finds more then one server
* ddle chooses according to relative intensities
* <tex txt="$\alpha-1, \alpha_-2, \ldots, \alpha_-K$">
* alphal, alpha2, etc</tex>. The probability of choosing idle
* server k will be gzven by
* <tex txt="\[\beta_k \frac{\alpha k}{\sum {\ell\in \cal I} \alpha_-{\ell}}, \]
x where $\cal I$ is the set of idle servers.
* alpha(k) / sum(j, alpha(j)), where the sum is over the set

* of idle servers.
* @param server server
* @return probability
* among tdle servers
*
public double prob(
if (beta[se

</tex>
index
of an idle server being choosen

int server) {
rver| != 0)

return beta[server];

return (
bet

}
Vi

* Returns a label

a[server]| (((1 — getStatus(server)) * alpha[server]) / sum()));

with the format SzxQz, whre zx is the list of busy servers.

* @see jmarkov.basic. State#label ()

*/
@Override
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public String label() {

String stg = ”7S7;
for (int k = 0; k < K; k++) {
stg += (getStatus(k) = 1) ? 7” + (k + 1) : 77
}
return stg + "Q’ + getQSize ();
}
/%
* This method gives a verbal description of the State.
*/
@Override
public String description () {
String stg = 77
if (lallldle ())
stg += ”Busy_.Servers:”;
else
stg += "No._one_in._service”;
for (int k = 0; k < K; k++) {
stg += (getStatus(k) = 1) 72 7”7 + (k + 1) + 7,7 : 77,
}
stg += "_There_are.” + getQSize() + 7_customers_waiting_.in._queue.”;
return stg;
}
}
Ve
*
* This class define the events.
* An event has two components: type which can have three wvalues
* depending whether it represents a directed arrival, a
* non—directed arrival or a departure, and server, which
* represents the choosen server (if arrival) or the finishing
* server. For non—directed arrivals we set server —1 by convention.
*
* @author Germdn Riano
*

*
class QueueMMKdNEvent extends Event {
final static int NDARRIVAL = 0;
//Non directed arrival (when all servers are busy)
final static int DIRARRIVAL = 1; //Directed arrival chooses among server(s)
final static int DEPARTURE = 2;
int type; // ARRIVAL or DEPARTURE

/% server = chosen server if ARRIVAL finds many available ,
* server = —1 if no server awailable

* server = finishing server if DEPARTURE event

*/

int server;

QueueMMKdNEvent (int type, int server) {
this.type = type;
this.server = server;

}

static EventsSet<QueueMMKdNEvent> getAllEvents (int K) {
EventsSet <QueueMMKdNEvent> eSet = new EventsSet<QueueMMKdNEvent> ();
eSet .add (new QueueMMKdNEvent (NDARRIVAL, —1));
for (int i = 0; i < K; i++4)
eSet . add (new QueueMMKdNEvent (DIRARRIVAL, i));
}

for (int i = 0; i < K; i++) {
eSet .add (new QueueMMKdNEvent (DEPARTURE, 1i));

return eSet;

}

/* (non—Javadoc)
* @see java.lang. Object#toString ()

*/
@Override
public String label() {
String stg = 77
switch (type) {
case (NDARRIVAL)
stg += "Non—directed_arrival”;
break;
case (DIRARRIVAL)
stg += ”Directed.arrival _to_server.” 4+ (server + 1);
break;
case (DEPARTURE)
stg += ”Departure_from_server.” + (server + 1);
break;
}
return stg;
}
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} //end class

// Lets start defining the State

// Now we define the main class

4.3 Drive Thru

4.3.1 Code

package examples.jmarkov;

import static examples.jmarkov.DriveThruEvent.Type.ARRIVAL;

import static examples.jmarkov.DriveThruEvent.Type. MIC.COMPLETION;
import static examples.jmarkov.DriveThruEvent.Type.SERVICE.COMPLETION ;
import static examples.jmarkov.DriveThruState. CustStatus.BLOCKED_DONE;
import static examples.jmarkov.DriveThruState.CustStatus .COOKING;
import static examples.jmarkov.DriveThruState. CustStatus .EMPTY;
import static examples.jmarkov.DriveThruState. CustStatus.ORDERING;
import static examples.jmarkov.DriveThruState. CustStatus. WAIT_-MIC;
import java.io.PrintWriter;

import jmarkov.MarkovProcess;

import jmarkov.SimpleMarkovProcess;

import jmarkov.basic.Event;

import jmarkov.basic.EventsSet;

import jmarkov.basic.State;

import jmarkov.basic.States;

import jmarkov.basic.StatesSet;

import jmarkov.basic.exceptions.NotUnichainException;

import examples.jmarkov.DriveThruState. CustStatus;

/

*

This

I

Mod :

class implements a Drive Thru.

SimpleMarkovProcess.

@author Margarita Arana y Gloria Diaz.

Germdn Riano (2004)

* Q@Quersion 1.0a

*/

Extends

Universidad de los Andes.

DriveThruEvent> {

1
2
the system

window and the microphone

la ventana

sitstema

la ventana y el micri’g%fono

public class DriveThru extends
SimpleMarkovProcess<DriveThruState ,
double lambda; // arrival rate
double mul; // Service rate for server
double mu2; // Service rate for server
int M; // Mazimum number of clients in
int S; // Number of servers
int N; // Number of places between the
VAL
* Constructor de un DriveThru.
*
* @param lambda
* Tasa de arribos
* @param mul
* Tasa de servicios del micri'g%fono
* @param mu2
* Tasa de servicios de
* @param M
* Ni'é‘%mero mi’g%mimo de entidades en el
* @param S
* Ni'g%mero de servidores
* @param N
* Ni'g%mero de puestos entre
*
/
public DriveThru(double lambda, double mul,

}
VAL

*

super ((new DriveThruState (N, S)),

this.lambda = lambda;
this.mul = mul;

this . mu2 = mu2;

this .M = M;

this.S = S;

this .N = N;

Default constructor for GUI.

*/

double mu2, int M, int S, int N)

DriveThruEvent. getAllEvents (N));
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public DriveThru() {
this (80.0, 12.0, 30.0, 4, 2, 1);

}
Jxok
x Determines when the states are active for each state.
*
* @see SimpleMarkovProcess#active (State, FEvent)
*/
@Override
public boolean active(DriveThruState s, DriveThruEvent ev) {
boolean result = false;
switch (ev.getType()) {
case ARRIVAL:
// un carro puede llegar si hay espacio en cola
result = (s.getQLength() <M — N — 1);
break;
case MIC_COMPLETION :
// se puede terminar de tomar la orden si una persona esta haciendo
// el pedido
result = (s.getMicStatus () == ORDERING);
break;
default:
// se puede terminar una orden si la persona correspondiente la esta
// esperando
if (ev.getPos() == N) {
result = (s.getMicStatus () == COOKING);
} else {
result = (s.getStatus(ev.getPos()) == COOKING);
}
}
return result;
}
VEE

*
* Computes the rate: the rate is lambda if an arraival occurs,
* the rate 1s mul if a service type one is finished,

* the rate 1s mu2 if an service type two is finished.

*

* @see SimpleMarkovProcess#rate (State, State, FEwvent)
*/
@QOverride
public double rate(DriveThruState i, DriveThruState j, DriveThruEvent e) {
switch (e.getType()) {
case ARRIVAL:
return lambda;
case MIC_.COMPLETION:
return mul;
default:
return mu?2;

}
VEE

* Computes the status of the destination when an event occurs
*

* @see SimpleMarkovProcess#dests (State, Ewvent)

*/

@Override

public States<DriveThruState> dests(DriveThruState i, DriveThruEvent e) {
int numServ = i.getAvlServs ();
CustStatus [] status = i.getStatus ();

CustStatus newMic = i.getMicStatus ();
int newQsize = i.getQLength ();

int numGone = 0;

boolean micMoves = false;

int k; // wtility counter

switch (e.getType()) {
case ARRIVAL:

if (i.getMicStatus () == EMPTY && numServ > 0) {
newMic = ORDERING;
numServ = numServ — 1;

} else if (i.getMicStatus() == EMPTY && numServ == 0) {
newMic WAIT-MIC;

} else if (i.getQLength() <M — N — 1) {
newQsize = i.getQLength() + 1;

}
break;
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case MIC_COMPLETION :
newMic = COOKING;
for (k = 0; ((k < N) && (status[k] != EMPTY)); k++)

3

if (k != N) {
status [k] = COOKING;
newMic = EMPTY;

micMoves = true;
}
break;
default:
numServ = numServ + 1;
int p = e.getPos ();
if (p>0&& p <N) {

status [p] = BLOCKEDDONE;

} else if (p == N)

newMic = BLOCKED_DONE;
} else {

status [0] = EMPTY;

int posl, pos2;

for (k = 1; ((k < N) && status[k] == BLOCKEDDONE); k++)
numG7one = k;
if (k != N) {

posl = k;

pos2 = N — 1;
for (k = posl; k <= pos2; k++) {
status [k — numGone] = status[k];

for (k = N — numGone; k < N; k++) {
status [k] = EMPTY;

}
if (newMic == COOKING) {

status [N — numGone] = newMic;
newMic = EMPTY;
micMoves = true;
} else if (newMic == BLOCKEDDONE) {
newMic = EMPTY;
micMoves = true;
}
}
break;

} // end switch

if (newMic == WAITMIC && numServ > 0) {
newMic = ORDERING;
numServ——;

}
if (micMoves) {
if (i.getQLength() > 0 && numServ > 0) {
newMic = ORDERING;

numServ = numServ — 1;
newQsize = i.getQLength() — 1;
} else if (i.getQLength() > 0 && numServ == 0) {

newMic = WAIT_MIC;
newQsize = i.getQLength() — 1;
}

StatesSet <DriveThruState> set = new StatesSet<DriveThruState >();
set .add (new DriveThruState(status, newMic, newQsize, numServ));
return set;

} // end dests

@QOverride
public String description () {
return "SISTEMA_DRIVE_THRU..” + ”"\nTasa_de_Entrada_.._.=." + lambda

4+ 7"\nTasa_en_el_Mico.o.=.” 4+ mul + "\nTasa_de_sevicio.2_.=."
+ mu2 + ”\nPosicii’L%n_delumicu_:_” 4+ N + ?\nServidores .. =_7
4+ S + ?\nCap_en_el._sistema.=." + M;

}

VAL

* Print all waiting times associated with each MOP

*/

@Override

public int printMOPs(PrintWriter out, int width, int decimals) {
int namesWidth = super.printMOPs(out, width, decimals);
// this rate work for all MOPs

19




double ldaEff;
try {
ldaEff = getEventRate (ARRIVAL. ordinal ());
String [] names = getMOPNames () ;
double waitTime;
int N = names.length;
namesWidth 4= 20;
for (int i = 0; i < N; i++4) {
waitTime = 60 x getMOPsAvg(names[i]) / ldaEff;
String name = " Waiting_time_for._” + names[i];
out.println (pad(name, namesWidth, false)
+ pad(waitTime, width, decimals) + ”_minutes”);

}
} catch (NotUnichainException e) {
out.println (e);

}
return namesWidth;
}
VAT
* Main method.
*
* @param a
* Not wused.
*/

public static void main(String[] a) {
// as in handout:
DriveThru theDT = new DriveThru(80.0, 12.0, 30.0, 4, 2, 1);
// DriveThru theDT = new DriveThru(80.0, 120.0, 30.0, 4, 2, 2);
theDT .setDebugLevel (5);

theDT .showGUI();
theDT. printAll ();
theDT . printMOPs ();
}

} // class end
ok

* This is a particular case of PropertiesState. Here, N is the position of the

* microphone. The first N—1 components represent the status of the first queue, the

* component N is the status of the microphone, the component N+1 is the number of clients
* the queue, and N+2 are the awvailable servers.

*

/

class DriveThruState extends State {

// private int micPos;

// private CustStatus micStatus;
private int numQ;

private int avlServ;

private CustStatus[] prop = null;

VAT
* This enumeration shows the different status for a customer.
*
*/
public enum CustStatus {
/*% Empty space. x/
EMPTY,
/x% In service. */
ORDERING,
/x*% A client in the microphone, but there are mo servers available. */
WAIT_MIC,
/*% The client order is being prepared. x/
COOKING,
/** The order is ready but the client is blocked. *x/
BLOCKED_DONE;

}
VL

* Builds a State representing an empty system

*

* @param micPos

* @param serv

*

DriveThruState (int micPos, int serv) {
this (new CustStatus[micPos], EMPTY, 0, serv);
for (int i = 0; i < prop.length; i++) {

prop[i] = EMPTY;
}
VEE
* Builds a DriveThru state.
*
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@param wvec
The states from the window wuntil the microphone,
without including the microphone.
@param mic
Microphone status.
@param num@
Number of clients in the queue.
@param avServs
Number of servers available.
/

DriveThruState (CustStatus [] statusVec, CustStatus micStatus, int numQ,
int avServs) {
prop = new CustStatus[statusVec.length + 1];

¥ X X X X X X ¥ ¥ ¥

int micPos = statusVec.length;
System . arraycopy (statusVec, 0, prop, 0, micPos);
prop [micPos]| = micStatus;
this .numQ = numQ;
this.avlServ = avServs;
}
VAL
* Compute all the MOPs for this state
*/
@Override

public void computeMOPs(MarkovProcess mp) {

int servEtapal 0;

int servEtapa2 0;

int blockedDone = 0;

int blockedBefore = 0;

int total = 0;

for (CustStatus s : prop) {
servEtapal 4= (s == ORDERING) ? 1 : 0;
servEtapa2 += (s == COOKING) 7 1 : 0;
blockedDone += (s == BLOCKEDDONE) ? 1 : 0;
blockedBefore += (s == WAIT-MIC) ? 1 : 0;

total 4= (s != EMPTY) ? 1 : 0;
}
setMOP (mp, ”Tamano_Cola”, getQLength());
setMOP (mp, ”Serv._Ocupados_Microfono.”, servEtapal);
setMOP (mp, ”Serv._.Ocupados_Cocinando”, servEtapa2);
setMOP (mp, ”Serv._.Ocupados.”, servEtapal + servEtapa2);

setMOP (mp, ” Clientes_Bloqueados_antes_de_ordenar”, blockedBefore);
setMOP (mp, ” Clientes_Bloqueados_con_orden_lista”, blockedDone);
setMOP (mp, ” Clientes_Bloqueados” , blockedBefore + blockedDone);

(

setMOP (mp, ” Total_clientes._en_Espera”, blockedBefore + blockedDone
+ getQLength ());
setMOP (mp, ”Total_Clientes.”, total + getQLength ());
}
VEE

* Get the number of clients in the queue.
*
* @return Number of clients in the queue.
*/
public int getQLength() {
return numQ@;
}

VEE
Get the status of the of the i—th component.

@param 1
index of the component

* X ¥ X ¥ ¥

* @return Status of the i—th component.
*/
public CustStatus getStatus(int i) {
return prop[i];
}

Jxk

* Get the wvector of clients statuses.

*

* @return Status of components 0 to N—I1.

*/

public CustStatus[] getStatus () {
int micPos = getMicPos ();
CustStatus [] status = new CustStatus[micPos];
System . arraycopy (prop, 0, status, 0, micPos);
return status;

}
VAL

* Get the status of the window.
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*
* @return The status of the client at the
*/
public CustStatus getMicStatus () {
int n = prop.length — 1;
return prop[n];

}
VAL

* Return the mic position.
*
* @return mic position index
*/
public int getMicPos () {
return prop.length — 1;
}

VAL

* Get the status of the window
*

* @return Status of the window.
*/

public CustStatus getVentana() {

return prop[0];

}

VEE

microphone.

* Computes the number of available servers.

*
% @return Number of awvailable servers.
*/
public int getAvlServs () {
return avlServ;
}

VEE
* @see jmarkov.basic.State#isConsistent ()
*/
@QOverride
public boolean isConsistent () {
// TODO Complete
return true;

}
@Override
public String label() {
String stg = 77
for (CustStatus s prop) {
switch (s) {
case EMPTY:
stg += 70"
break;
case ORDERING:
stg 4= m’;
break;
case WAIT_MIC:
stg 4= "w;
break;
case COOKING:
stg += "c¢”;
break;
case BLOCKED_DONE:
stg 4= "b”;
break;
}
}
return stg + "Q”7 4+ numQ@;
// return stg + 7Q” + prop[micPos + 1]
}

String statusDesc(CustStatus stat) {
switch (stat) {
case EMPTY:
return "empty” ;
case ORDERING:
return ”ordering ,”;
case WAIT_MIC:
return " waiting”;
case COOKING:
return ”cooking”;
default: // DONE
return ”blocked”;
}

+ ”S” + prop[micPos + 2];
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VAT

* Describes the State

*
* @see jmarkov.basic.State#description ()
*/
@Override
public String description () {

String stg = "7

int N = getMicPos ();

stg = ”Queue_CustStatus:_(";

for (int i = 0; i < N; i++4) {

stg += statusDesc(getStatus(i));
stg += (i < N — 1) ? 7 .7 : 77

}

stg += 7 )._Mic_status:.” 4 statusDesc(getMicStatus ());

stg += 7 ._Queue_Size:.” + getQLength ();

return stg;
}
VAT
* @see jmarkov.basic.State#compareTo(jmarkov.basic. State)
*/
@QOverride

public int compareTo(State j) {
if (!(j instanceof DriveThruState))
throw new IllegalArgumentException (” Comparing_wrong_types!”);
DriveThruState u = (DriveThruState) j;
int micPos = getMicPos ();
for (int k = 0; k <= micPos; k++)
if (getStatus(k).ordinal() > u.getStatus(k).ordinal())
return +1;
if (getStatus(k).ordinal() < u.getStatus(k).ordinal())
return —1;

if (getQLength() > u.getQLength())
return +1;

if (getQLength() < u.getQLength())
return —1;

if (getAvlServs() > u.getAvlServs())
return +41;

if (getAvlServs() < u.getAvlServs())
return —1;

return 0;

}
Jxx

* This class implements the events in a Drive Thru.
*/
class DriveThruEvent extends jmarkov.basic.Event {
/x* FEvent types. */
public static enum Type {
/*x Arrivale to the system. x/
ARRIVAL,
/*% Car at mic finishes service. %/
MIC_COMPLETION,
/*% Service completion for somebody who ordered. x/
SERVICE_COMPLETION;

}

private Type type; // event type
private int position; // Position of the client whose order is complete

VEE

* Creates an ARRIVAL or MIC_.COMPLETION event.

*

* @param type

*/

public DriveThruEvent (Type type) {
assert (type = ARRIVAL || type == MIC.COMPLETION));
this.type = type;

}
VEE

* Creates a Service Completion event at he given position.
*

* @param position

* Postion where the event occurs ( O—based ).
*/

public DriveThruEvent (int position) {

this.type = SERVICE_.COMPLETION;
this. position = position;
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VAT
* @return position where this event occurs. (wvalid only if type ==
* SERVICE_.COMPLETION ) .
*/

public int getPos() {
assert (type == SERVICE_.COMPLETION);
return position;

VAT

* @return event type

*/

public Type getType() {
return type;

}

VEE

* @param micPos

* @return A set with all the events in the system.

*

/

public static EventsSet<DriveThruEvent> getAllEvents (int micPos) {
EventsSet<DriveThruEvent> eSet = new EventsSet<DriveThruEvent >();
eSet.add(new DriveThruEvent (ARRIVAL));
eSet.add(new DriveThruEvent (MIC.COMPLETION) ) ;
for (int i = 0; i <= micPos; i++)

eSet .add (new DriveThruEvent(i));

return eSet;

}
@Override
public String label() {
String stg = "7
switch (type) {
case ARRIVAL:
stg = 7 Arrival”;
break;
case MIC_COMPLETION:
stg = ”MicEnd” ;
break;
default:
stg = "SrvEnd(” 4+ position + 7)”;
}
return stg;
}

4.3.2 Results

Output for Drive Thru

SISTEMA DRIVE THRU.

Tasa de Entrada 80.0
Tasa en el Mic 120.0
Tasa de sevicio 2 = 30.0

Posici{\ o}n_del_mic__=_5
Servidores oo ... =_4
Cap_en._el_sistema.=_14

System._has._498 _States.

MEASURES._OF _.PERFORMANCE

NAMEL e e MEAN_ o SDEV
Tamano_Cola oo oo nae e 4.503 oo 2.693
Serv._Ocupados_-Microfono o o oo 0.550 e 0.498
Serv._Ocupados_Cocinandococ oo oo 2.199 o 1.165
Serv.OcupadoS.coooccecoonnccnnonmrcooonoeoo 2.749 oo 1.088
Clientes _Bloqueados_antes_de_ordenar__.__.. 0.112____. 0.316
Clientes_Bloqueados_con_orden_.lista oo 1.540 o 1.646
Clientes _.Bloqueados oo oo 1.652 . 1.604
Total_clientes_en_Esperac oo 6.155 ..o 3.487
Total _cClientes oo oo e 8.903 e 3.396
EVENTS_OCCURANCE_RATES

NAME_._.___._ -MEAN_RATE

Arrival oo oo 65.965

MicEnd oo 65.965
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SrvEnd (0) oo 28.019

SrvEnd (1) oo 9.927

SrvEnd (2) ceceeo 9.446

SrvEnd (3) oo 8.333

SrvEnd (4) ceceeo 6.114

SrvEnd (5) ceceen 4.126
Tiempo.de_espera._para_Tamano_.Cola:.4.096 _minutos
Tiempo_de_espera._para_Serv_Ocupados_Microfono.:_0.5_minutos
Tiempo_de_espera_para_Serv._Ocupados_Cocinando:_2_minutos
Tiempo_de_espera._para_Serv._Ocupados_:.2.5_minutos

Tiempo._de_espera_para_-Clientes_Bloqueados_antes_de_ordenar:._.0.102_minutos
Tiempo.de_espera._para_Clientes_Bloqueados._con._orden_lista:_1.4_minutos
Tiempo_de_espera._para_Clientes_Bloqueados:_.1.503 _minutos
Tiempo_de_espera_para_Total_clientes_en_Espera:_5.598 _minutos
Tiempo._de_espera_para_Total_Clientes_:_.8.098 _minutos

5 Modeling Quasi-Birth and Death Processes

In this section we give a brief description of Quasi-Birth and Death Processes (QBD), and explain
how they can be modeled using jMarkov. QBD are Markov Processes with an infinite space state,
but with a very specific repetitive structure that makes them quite tractable.

5.1 Quasi-Birth and Death Processes

Consider a Markov process {X (¢) : ¢ > 0} with a two dimensional state space S = {(n,i) : n >
0,0 < i < m}. The first coordinate n is called the level of the process and the second coordinate
1 is called the phase. We assume that the number of phases m is finite. In applications, the level
usually represents the number of items in the system, whereas the phase might represent different
stages of a service process.

We will assume that, in one step transition, this process can go only to the states in the same
level or to adjacent levels. This characteristic is analogous to a Birth and Death Process, where
the only allowed transitions are to the two adjacent states (see, e.g [5]). Transitions can be from
state (n,4) to state (n/,i') only if n’ =n, n" =n—1orn’ =n+1, and, for n > 1 the transition
rate is independent of the level n. Therefore, the generator matrix, Q, has the following structure

Boo Boi
Bio A1 A
Q= Ay A Ay ’

where, as usual, the rows add up to 0. An infinite Markov Process with the conditions described
above is called a Quasi-Birth and Death Process (QBD).

In general, the level zero might have a number of phases mg # m. We will call these first mg
states the boundary states, and all other states will be called typical states. Note that matrix Bgg
has size mgy x mg, whereas Bo; and Bjg are matrices of sizes (mg x m) and (m x mg), respectively.
Assume that the QBD is an ergodic Markov Chain. As a result, there is a steady state distribution
7 that is the unique solution 7r to the system wQ = 0, w1l = 1. Divide this 7 vector by levels,
analogously to the way Q was divided, as

T = [m, 1, ...
Then, it can be shown that a solution exist that satisfy
Tnt1 = TnR, n>1,
where R is a constant square matrix of order m [7]. This R is the solution to the equation

Ao +RA; +R?Ay = 0.
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There are various algorithms that can be used to compute the matrix R. For example, you can
start with any initial guess Ry and obtain a series of Ry through iterations of the form

Rii1 = —(Ag+RiAAL

This process is shown to converge (and A; does have an inverse). More elaborated algorithms
are presented in Latouche and Ramaswami [6]. Once R has been determined then 7o and 7, are
determined by solving the following linear system of equations

Boo Bo:
[mo ] By A:-+RA,

mol+m(I-R)"'1=1.

=[0 0]

5.2 Measures of performance for QBDs

We consider two types of measures of performance that can be defined in a QBD model. The first
type can be seen as a reward r; received whenever the system is in phase i, independent of the
level, for level n > 1. The long-run value for such a measure of performance is computed according
to

Z w,r = m (I - R)'r,
n=1

where r is an m-size column vector with components r;. The second type of reward has the form
nr;, whenever the system is in phase i of level n. Its long-run value is

Z nm,r = 7 R(I — R)°r.

n=1

5.3 Modeling QBD with jQBD

Modeling QBD with jMarkov is similar to modeling a Markov Processes. Again, the user has to
code the states, the events, and then define the dynamics of the system through active, dests, and
rate. The main difference is that special care needs to be taken when defining the destination states
for the typical states. Rather than defining a new level for the destination state, the user should
give a new relative level, which can be -1, 0, or +1. This is accomplished by using two different
classes to define states. The current state of the system is a GeomState, but the destination states
are GeomRelState. The process itself must extend the class GeomProcess, which in turn is an
extension of MarkovProcess.

The building algorithm uses the information stored about the dynamics of the process to explore
the graph and build only the first three levels of the system. From this, it is straightforward to
extract matrices Bgg, Bo1, B1ig, Ag, A1, and As. Once these matrices are obtained, the stability
condition is checked. If the system is found to be stable, then the matrices Ay, A1, and As are
passed to the solver, which takes care of computing the matrix R and the steady state probabilities
vectors 7 and 71, using the formulas described above. The implemented solver (Mt jLogRedSolver)
uses the logarithmic reduction algorithm [6]. This class uses MTJ for matrices manipulations. There
are also mechanisms to define both types of measures of performance mentioned above, and jQBD
can compute the long run average value for all of them.

26



5.4 An Example

To illustrate the modeling process with jQBD, we will show the previous steps with a simple
example. Consider a infinite queue with a station that has a single hyper-exponential server with n
service phases, with probability a; to reach the service phase ¢ and with service rate u; at phase ¢,
where 0 < ¢ < n. The station is fed from an external source according to a Poisson processes with
rate A. We will use this model as an illustrative example of a QBD process, and will show how
each of the previous steps is performed for this example. Of course all measures of performance
for this system can be readily obtained in closed form since it is a particular case of an M/G/1,
but we chose this example because of its simplicity. The code below actually models any general
phase-type distribution, so the hyper-geometric will be a particular case.

e States: Because of the memoryless property, the state of the system is fully characterized
by an integer valued vector x = (z1,x32), where z1 > 0 represents the number of items in the
system and 0 < xo < n represents the current phase of the service process.Note that, knowing
this, we can know how many items are in service and how many are queuing. It is important
to highlight that the computational representation uses only the phase of the system (z3)
because the level (z1)is manged internally by the framework.

e Events: An event occurs whenever an item arrives to the system or finishes processing at
a particular service phase 0 < ¢ < n. Therefore, we will define the set of possible events as
E ={a,c1,ca,...,cn}, where the event a represents an arrival to the system and an event ¢;
represents the completion of a service in phase 1.

e Markov Process: We elected to implement GeomProcess, which implied coding the follow-
ing three methods:

— active (i,e): Since the queue is an infinite QBD process the event a is always active,
and the events ¢;,0 < i < n are active if there is an item at workstation on service phase
i. The code to achieve this can be seen in Figure [6]

— dests (i,e,j): When the event a occurs there is always an increment on the system

level, but you need to consider if the server is idle or busy. When the server is idle the
new costumer could start in any of the n service phases, then the system could reach
anyone of the first level n states with probability ;. On the other hand, if the server is
busy on service phase i, the system will reach the next level state with the same service
phase 1.
On the other hand, when the server finishes one service ¢;, no matter which phase type,
the level of the system is reduced by one, but you need to consider if the system is in
level 1 or if it is in level 2 or above. When the level is 1, the system reach the unique
state (0,0) where there are no costumer in the system and the server is idle. On the
other hand, if the system level is equal or greater than 2, the system could reach any
of the n states in the level below with probability a;. The Java code can be seen in
Figure [7}

— rate (i,e): The rate of occurrence of event a is given simply by A and the rate of
occurrence of an event ¢; is given by p;. In Figure[8|you can see the corresponding code.

e MOPs: Using the MOPS types defined in jQBD component, we will illustrate its use calcu-
lating the expected WIP on the system.

Finally, the output obtained after running the model can be seen in the Graphical User Interface
(GUI) in Figure @ There is no need to use the GUI, but it is helpful to do so during the first stages
of development, to make sure that all transitions are being generated as expected. All the measures
of performance defined can be extracted by convenience methods defined in the API or a report
printed to standard output. Such a report can be seen in Figure
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public int getCurPH() {
if (type == ARRIVAL)
throw new IllegalArgumentException (
”?Current_phase_.is_not_defined _for_event.” + ARRIVAL);
return curPH;

}
VEE

* @return Returns the type.

*/

public Type getType() {
return type;

}
Figure 6: Active method of class HiperExQueue.java
// finish in phase n
E.add (new HiperExQueueEvent (FINISH.SERVICE, n));
return E;
}
@Override
public String label() {
String stg = 77
switch (type) {
case ARRIVAL:
stg = 7 Arrival”;
break;
case FINISH_SERVICE:
stg = "Ph(” + curPH + 7)7;
}
return stg;
}
}
VEE
* * This class define the states in the queue.
* @author Julio Goez — German Riano. Universidad de los Andes.
*/
class HiperExQueueState extends PropertiesState {
VAL
* We identify the states with the curPH of server in station, (1,
* ..,n) or 0 if ididle.

Figure 7: dests method of class HiperExQueue.java

6 Modeling Priority Queues: incorporating phase-type distribu-
tions with jPhase

In this section we introduce an example to illustrate the use of jMarkov, particularly the jQBD and
jPhase modules. We do not aim to describe the implementation in full here, which is available
at |4, but to highlight some of the key steps in modeling with jMarkov.

We consider a first-come-first-serve queue with a single server and two classes of jobs that receive
service, one with high priority and the other with low priority. We also refer to high and low priority
jobs as being of class 1 and 2, respectively. For class-i jobs, arrivals follow a Poisson process with
rate \;, while services follow a PH distribution with parameters (a(i),A(i)). We assume a finite
buffer for high-priority jobs as its size must be chosen to keep the blocking probability below a
certain threshold. Instead, for low-priority jobs we assume the buffer has infinite capacity. We
further assume a preemptive scheduling policy, where low-priority jobs start service only when no
high-priority jobs are present, and a low-priority job in service is pushed back to the head of its
buffer if a high-priority job arrives.

Given the assumptions above, and since only one event occurs at any given time, the number
of jobs of either type increases or decreases by one. We can therefore model this queue as a QBD

28




© 00Uk W

0O U WN -

©00 DU kW

== e
N = O

VAL
* Returns the service phase of process
* @return Service phase
*/
public int getSrvPhase () {
return this.prop[0];

}

VEE

* @see jmarkov.basic. State#isConsistent ()
*/

@Override

public boolean isConsistent () {
// TODO Complete
return true;

VEE
* Returns the service status
* @return Service status (1 = busy, 0 = free)
*/
public int getSrvStatus () {
return (getSrvPhase() == 0) 7 0 : 1;
}

@Override
public HiperExQueueState clone () {
return new HiperExQueueState(getSrvPhase ());

Figure 8: rate method of class HiperExQueue.java

where the level holds the number of low-priority jobs, while all other information necessary to
describe the system state is left for the phase. The phase thus holds the number of high-priority
jobs in the system and the service phase of the job currently in service. We also include in the phase
the type of the job currently in service, which is not strictly necessary but is helpful to describe
the model and to extend it. Our first step is therefore to define the system state as in the following
code snippet.

class PriorityQueueMPHPHPreemptState extends PropertiesState {
public PriorityQueueMPHPHPreemptState (int numberHiJobs, int servicePhase, int serviceType)
super (3);
setProperty (0, numberHiJobs);
setProperty (1, servicePhase);
setProperty (2, serviceType);

}

Note that our class PriorityQueueMPHPHPreemptState extends the jMarkov abstract class PropertiesState,

which allows us to define the state as an array of integers. The state is thus defined by three integers
that hold the number of high priority jobs, the service phase, and the type of the job in service.
Notice that we only need to define the phase, as the level behaves as in a QBD, taking values on
the non-negative integers and increasing/decreasing by at most one in a single transition. The
constructor simply calls the super-class specifying that the phase is described with 3 integers, and
sets each of them in their corresponding position.

We now move on to define the events via the PriorityQueueMPHPHPreemptEvent class as
follows.

class PriorityQueueMPHPHPreemptEvent extends Event {

public enum Type {
ARRIVAL_HI,
SERVICE_END_HI,
SERVICE_PHASECHG_HI,
ARRIVALLOW,
SERVICE_END_LOW,
SERVICE_PHASECHG_LOW

}

Type eventType;

int eventPhase;
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Figure 9: GUI example of jMarkov

MEASURES OF PERFORMANCE

NAME MEAN SDEV
Expected Level 0.14286 ?
Server Utilization 0.12500 0.33072

Figure 10: MOPs report of jMarkov

Here we see that this class extends the abstract class Event and defines an enumeration Type to list
all the possible events: arrivals, service completion, and service phase change without completion,
for both high and low priority jobs. Lines 10-11 then show that the two properties that define an
event are the type of the event, and the service phase in which the event occurs. Note that here
by phase we refer to the phase of the job in service, which we set to 0 if the system is idle.

With the definition of states and events we then define our main class PriorityQueueMPHPHPreempt,

which, as shown in the following snippet, extends the GeomProcess class since our model is a QBD.

public class PriorityQueueMPHPHPreempt extends
GeomProcess<PriorityQueueMPHPHPreemptState , PriorityQueueMPHPHPreemptEvent>{
double lambda_hi;
double lambda_low;
PhaseVar servTime_hi;
PhaseVar servTime_low;
int bufferCapacity;

}

Here lines 2 and 3 define the properties associated to the arrival rates, while lines 4 and 5 define
the PH variables that describe the service process. These are jPhase objects. The final property is
the capacity of the high-priority buffer. As part of this class we need to define the active, dests,
and rates methods. The following code illustrates part of the active method.
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switch (event.eventType) {
case ARRIVAL_HI:
if ( state.getNumberHiJobs() < bufferCapacity )
result = true;
break;
case SERVICE_END_HI:

result = (state.getServiceType()==1 && state.getServicePhase () == event.eventPhase|);

result = result && servTime_hi.getMat0().get(state.getServicePhase()—1) > 0;
break;

}

In case the event is a high-priority arrival, lines 3-5 allow it to be active if there is spare capacity
in the buffer. Instead, if the event is a high-priority service completion, line 7 first checks if the
current job in service is of class 1 and if its service phase matches that of the event. Next, line 8
checks if it is actually possible to have a service completion in such phase, i.e., if the entry of the
exit vector —AM1 corresponding to the current service phase is positive. This vector is obtained
with the jPhase getMatO method. Similar checks are performed for all other events.

Next, in the dests and rate methods we define the destination state for each event in each
state, and the corresponding transition rate. In the interest of space, the next snippet depicts a
small section of the rate method, where we define the transition rate in case of a high-priority
arrival.

switch (event.eventType) {
case ARRIVAL_HI:

if (curState.getNumberHiJobs () == 0){

rate = lambda_hixservTime_hi.getVector (). get(newPhase—1);
}else

rate = lambda_hi;

break;

Here lines 3-4 consider the case where the number of high-priority jobs in the current state is
zero, which allows the new high-priority job to start service, even if a low-priority job is present.
The transition rate is then the arrival rate times the probability that a new high-priority service
starts in the phase marked by the destination state. This probability is obtained with the jPhase
getVector method. Instead, lines 5-6 cover the case where a high-priority job is already in service,
thus the new job simply joins the queue with transition rate given by its arrival rate.

With all the previous definitions we now state the main method, where we set up the parameters
of the model, and call the jMarkov routines to build the model, solve it, and compute the measures
of performance, as shown next.

public static void main(String[] a) {
double lambda_hi = 0.2;
double lambda_low = 0.2;

double [] data = readTextFile(”src/examples/jphase/W2.txt”);
EMHyperErlangFit fitter_hi = new EMHyperErlangFit(data);
ContPhaseVar servTime_hi = fitter_hi.fit (4);

MomentsACPHFit fitter_low = new MomentsACPHFit(2, 6, 25);
ContPhaseVar servTime_low = fitter_low . fit ();

int bufferCapacity = 100;

PriorityQueueMPHPHPreempt model = new PriorityQueueMPHPHPreempt(lambda_hi, lambda_low ,
servTime_hi, servTime_low, bufferCapacity);

model. generate ();

model . printMOPs () ;

}

Here lines 2-3 define the arrival rates of both job types. Next, lines 5-7 build the PH distribution
for the high-priority services. To this end, we first read a data trace into a double array, which we
pass to a jPhase EMHyperErlangFit fitter to obtain the fitted PH distribution. Lines 9-10 perform
a similar step, but in this case we use a moment-matching method to obtain a low-priority service-
time PH distribution with a given set of first three moments. After this, line 12 defines the buffer
capacity and line 13 builds the model object with all the parameters. Lines 15-16 ask jMarkov to
generate the model and compute the measures of performance, and we obtain the following result.
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MEASURES OF PERFORMANCE

NAME MEAN SDEV
Expected Level 6.47779

Number High Jobs 1.02821 1.79758
High Jobs Blocking Probability 0.00494 0.07010
Utilization 0.84043 0.36621

Thus, with the parameters as above, the mean number of high and low priority jobs is 1.02 and
6.47, respectively, while the blocking probability of high-priority jobs is 0.0049. The output also
includes the mean server utilization and the standard deviation of the performance measures.

We highlight three central takeaways from the above example. (i) The definition of the model
is made at a high level, referring to events (arrivals, service completions, service phase transitions),
and their effect on the system state. At no point one needs to explicitly define the entries of the
matrices Ay, A, or As in , which is not a trivial task when the model is made of several
variables as in this example. jMarkov takes care of this task. (ii) Once the model is defined, it
is relatively simple to introduce a modification in the operational rules. Consider for instance
modifying the preemptive policy by a non-preemptive one. If one is in charge of building the
transition matrix , this would require an almost completely new model. Instead, with jMarkov
we can start with the current model and modify the dests and rate methods, specifically the cases
where a high priority arrival occurs. This facilitates the evaluation of different policies, which is a
common task in system modeling. (iii) The integration of the j@BD and jPhase modules allows us
to use the representation of PH variables when defining the QBD model with the active, dests,
and rate methods. In these methods we can explicitly refer to the initial phase probabilities, or
to the rates of service completion at any given phase. Further, we can exploit the fitting methods
in jPhase to define the model parameters, using either trace data or statistics such as the mean
or variance. The integration of these modules in jMarkov thus facilitates the development and
evaluation of complex models.

7 Further Development

This project is currently under development, and therefore we appreciate all the feedback we can
receive.
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