
BVPTWP Manual
J. R. CASH∗, D. HOLLEVOET?, F. MAZZIA†, A. M. NAGY‡

∗
Department of Mathematics, Imperial College, South Kensington, London SW7, England.

e-mail: j.cash@imperial.ac.uk

?
Vakgroep Toegepaste Wiskunde en Informatica, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent.

e-mail: davy.hollevoet@ugent.be

†
Dipartimento di Matematica, Università di Bari, Via Orabona 4, 70125 Bari (Italy).

e-mail: mazzia@dm.uniba.it

‡
Dipartimento di Matematica, Università di Bari, Via Orabona 4, 70125 Bari (Italy)

Department of Mathematics, Benha University, 13518 Benha (Egypt).

e-mail: abdelhameed nagy@yahoo.com

1

Contents

1. Introduction 2

2. BVPTWP Package 2

2.1. Installation 2

2.2. How to solve test set problems using a MATLAB solver 3

2.3. Examples 6

1 Introduction

In recent years much attention has been given to the numerical solution of boundary value problems
in ODEs. Of particular interest has been the solution of singularly perturbed problems. This
type of problem arises in various fields of science and engineering such as fluid mechanics, physics,
chemistry, mechanics, chemical reactor theory, convection diffusion processes, optimal control and
other branches of applied mathematics. Singular perturbation problems depend on the presence of
a small, positive parameter which provides a multi-scale character to the solution. That is there are
layer(s) where the solution varies very rapidly in some parts of the region of integration and varies
slowly in some other parts. bvptwp is a MATLAB program that calculates an approximate solution
for two-point Boundary Value Problems that may or may not be singularly perturbed. The general
BVP is of the form:

y′ = f(x, y), a ≤ x ≤ b (1)

g(y(a), y(b)) = 0, (2)

where g = (g1, g2, · · ·, gn)T is a vector functions. The functions f and gi are assumed to be dif-
ferentiable. The problem must be posed as a first-order system. This requirement is not unduly
restrictive, however, since standard techniques can be used to convert an nth-order equation to a
system of n first-order equations. For example, the second-order singularly perturbed problem

λy′′ = f(x, y, y′), 0 < x < 1, y(0) = α, y(1) = β, (3)

where 0 < λ� 1, x ∈ R, can be converted to the following first-order system:

u′ = z,

z′ =
1
λ
f(x, u, z),

u(0) = α, u(1) = β.

2 BVPTWP Package

The purpose of this section is to give a brief introduction to the use of the routines in Matlab by
means of some fairly simple examples. In particular, we show how to compute an approximate
solution and how to evaluate these solutions by various graphical tools. Although the examples
given below do not touch upon all the features of bvptwp tools, they illustrate the fundamental
ideas underlying the package.

2.1 Installation

Extract the contents of the archive bvptwp 1.0.zip into a directory of your choice, e.g. bvptwp-path.
This newly created directory should now be added to the MATLAB path. This can be done tem-
porarly (for one MATLAB session) by executing

2

>> addpath (’bvptwp-path/bvptwp_1.0’)

on the MATLAB command line (be sure to use single quotes). The package can also be added to
the MATLAB path permanently via File/Set Path... and Add Folder.... The bvptwp package
is now ready for use.

2.2 How to solve a problem using bvptwp

The solver bvptwp is an interface for solving BVPs by using a deferred correction scheme based on
LOBATTO methods (twpbvp l), a deferred correction scheme based on MIRK methods (twpbvp m)
or a continuation strategy based on LOBATTO methods (acdc). The interface is built such that it
can be used in a MATLAB environment like the well-known solvers bvp4c and bvp5c. The three
codes can also be used with a hybrid mesh selection strategy based on conditioning by means of the
corresponding variants twpbvpc l, twpbvpc m and acdcc.

To solve a problem with m components, bvptwp.m can be invoked with three parameters:

>> SOL = bvptwp(odefun, bcfun, solinit)

or four parameters:

>> SOL = bvptwp(odefun, bcfun, solinit, options)

• odefun: function handle
The provided function implements f(x, y) of the differential equation. If option Vectorized is
not enabled, this function is given a scalar x and a vector y and should return a m× 1 matrix.

• bcfun: function handle
The provided function computes bc(y(a), y(b)) at the boundaries.

• solinit: struct
A compatible structure for solinit can be constructed with the function bvpinit from MAT-
LAB. Afterwards, an additional field fixpnt can be added to the structure obtained, which
specifies additional mesh points in which the solution should be calculated.

• (Optional) options: struct
A structure that specifies options for the solver. Can be constructed with bvptwpset.

The output SOL is a structure with

• SOL.x: last mesh selected by bvptwp.

• SOL.y: approximation to y(x) at the mesh points of SOL.x.

• SOL.solver: ’twpbvp m’ or ’twpbvp l’ or ’acdc’ or ’twpbvpc m’ or ’twpbvpc l’ or ’acdcc’.

• SOL.lambda: the final value of the continuation parameter used (only for acdc, acdcc).

• SOL.iflbvp:

0 : the code solved the problem.

−1 : the code solved a problem with a different continuation parameter (only for acdc,
acdcc).

1 : tha code failed (maximum number of meshpoints reached).

3

2 : the code failed (maximum number of possible meshes reached, default 100, only for
twpbvpc m, twpbvpc l).

3 : the code failed (maximum number of continuation steps reached, only for acdc, acdcc).

4 : the code failed (unknown error).

• SOL.condpar: information about the conditioning parameters (only for twpbvpc m, twpbvpc l,
acdcc)

– SOL.condpar.kappa: conditioning of the bvp in inf norm.

– SOL.condpar.kappa1: conditioning related to changes in the initial values (inf norm).

– SOL.condpar.kappa2: conditioning related to the Green’s function (inf norm).

– SOL.condpar.gamma1: conditioning related to changes in the initial values (1 norm).

– SOL.condpar.sigma: stiffness parameter.

– SOL.condpar.stabcond: 1 or 0 if the conditioning parameters stabilized.

• SOL.stats: Computational cost, statistics and information about the maximum scaled error
computed.

>> SOL = bvptwp(odefun, bcfun, solinit, options)

solves as above with default parameters replaced by values in options, a structure created with
the bvptwpset function. To reduce the run time greatly, use options to supply a function for
evaluating the Jacobian and/or Jvectorize.

2.2.1 Options that can be specified in parameter options (defaults are marked with
{}).

Options shared with bvpc4.m and bvpc5.m:

• Vectorized: on|{off}
Set to ’on’ when odefun can be evaluated at several points at once. When enabled, the
function handle is invoked as odefun ([x1, . . . , xn], [y1, . . . , yn]) and is expected to return an
m× n matrix.

• FJacobian: function handle df
If provided, df implements the Jacobian ∂f/∂y of the problem. The function provided will be
invoked as df(x,y) with scalar x and vector y. In the absence of this option, the Jacobian is
calculated numerically with odenumjac from MATLAB.

• BCJacobian: function handle dbc
A function handle that computes the partial derivatives ∂bc/∂ya and ∂bc/∂yb of the boundary
conditions. Calls to this function will be made as dbc(ya,yb) and two m ×m matrices are
expected as output.

• NMax: positive integer {b50000/mc}
Maximum number of mesh points allowed.

• RelTol: positive scalar {1e-3} or vector. Relative tolerance for the error. If RelTol is a vector
a different tolerance is used for all components of the solution. The value 0 means that the
corresponding component is not used in the error estimation.

• Stats: on|{off}
Show a few statistics at the end of the computations.

Additional options provided by bvptwp.m:

4

• Solver:’twpbvp m’|{’twpbvp l’} (for linear problems) |’acdc’|{’twpbvpc m’} (for non
linear problems) |’twpbvpc l’ |’acdcc’
Use deferred correction based on MIRK (twpbvp m) or LOBATTO methods (twpbvp l) or a
continuation strategy based on LOBATTO methods (acdc) or their implementation based on
conditioning (twpbvpc m,twpbvpc m,acdcc).

• LambdaStart: positive scalar {0.5}
Starting value for the continuation parameter, used only for acdc(c) solver.

• LambdaMin: positive scalar {1e-5}
Final value for the continuation parameter, used only for acdc(c) solver.

• JVectorized: on|{off}
Set to ’on’ if the function handle df specified for FJacobian is capable of computing the
Jacobian at several points at once. If enabled, this setting will cause df to be called as
df([x1, . . . , xn], [y1, . . . , yn]). This function should return a m×m× n matrix.

• Linear: on|{off}
Used to indicate whether or not the problem is linear. If enabled, the problem is solved taking
into account the linear behavior.

• MaxNumberOfMeshes: positive integer {100}
This is the maximum number of different meshes that could be used during computation. It
is important to avoid loops.

• MaxNumberOfContStep: positive integer {150}
This is the maximum number of continuation steps (only for acdc/acdcc solvers).

• Debug: on|{off}
Enable or disable debugging information (very verbose!).

5

Figure 1: Output of the example shock bvptwp.

2.3 Examples

2.3.1 Example 1

We consider the following singularly perturbed, linear two-point boundary value problem

εy′′ + xy′ = −επ2 cos(πx)− πx sin(πx),
y(−1) = −2, y(1) = 0 (4)

whose exact solution is y(x) = cos(πx) + erf(x/
√

2ε)/erf(1/
√

2ε).

The following MATLAB function illustrates how bvptwp.m can be used to solve example (4).

f unc t i on shock bvptwp (s o l v e r)
%shock bvp twp The s o l u t i o n has a shock l a y e r near x = 0
% This i s an example used in U. Ascher , R. Mat the i j , and R. Rus s e l l ,
% Numerical S o l u t i on o f Boundary Value Problems f o r Ordinary D i f f e r e n t i a l
% Equations , SIAM, Ph i l a d e l p h i a , PA, 1995 , to i l l u s t r a t e t he mesh
% s e l e c t i o n s t r a t e g y o f COLSYS.
%
% For 0 < e << 1 , t he s o l u t i o n o f
%
% e∗y ’ ’ + x∗y ’ = −e∗ p i ˆ2∗ cos (p i ∗x) − p i ∗x∗ s i n (p i ∗x)
%
% on the i n t e r v a l [−1 ,1] w i th boundary c ond i t i o n s y(−1) = −2 and y (1) = 0
% has a rap id t r a n s i t i o n l a y e r a t x = 0 .
%
% For t h i s problem ,
% a n a l y t i c a l p a r t i a l d e r i v a t i v e s are easy to d e r i v e and the s o l v e r b e n e f i t s
% from us ing them .
%
% By d e f a u l t , t h i s example uses t he ’ twpbvpc l ’ s o l v e r . Use syn tax
% SHOCK BVPTWP(s o l v e r) to s o l v e t h i s problem wi th the another s o l v e r
% a v a i l a b l e s o l v e r s are : ’ twpbvp m ’ , ’ twpbvpc m ’ , ’ twpbvp l ’ , ’ twpbvpc l ’ ,
% ’ acdc ’ , ’ acdcc ’
%
% See a l s o bvptwp , bvp twpse t , bvp twpge t , b v p i n i t , f u n c t i o n h and l e .
% THIS MFILE IS ADAPDET FORM THE SHOCKBVP OF
% Jacek Kierzenka and Lawrence F . Shampine
% Copyr igh t 1984−2007 The MathWorks , Inc .

6

% $Rev i s ion : 1 . 1 0 . 4 . 3 $ $Date : 2007/05/23 18 :53 : 57 $

i f narg in < 1
s o l v e r = ’ twpbvpc l ’ ;

end

% The d i f f e r e n t i a l e qua t i on s w r i t t e n as a f i r s t order system and the
% boundary c ond i t i o n s are coded in shockODE and shockBC , r e s p e c t i v e l y . Their
% p a r t i a l d e r i v a t i v e s are coded in shockJac and shockBCJac and passed to the
% s o l v e r v i a the op t i on s . The op t i on ’ Vec tor i zed ’ i n s t r u c t s t he s o l v e r t h a t
% the d i f f e r e n t i a l e qua t i on f un c t i on has been v e c t o r i z e d , i . e .
% shockODE ([x1 x2 . . .] , [y1 y2 . . .]) r e t u rn s [shockODE(x1 , y1) shockODE(x2 , y2) . . .] .
% Such cod ing improves the s o l v e r performance .

opt ions = bvptwpset (’ FJacobian ’ , @shockJac , ’ BCJacobian ’ , @shockBCJac , . . .
’ So lve r ’ , s o l ve r , ’ RelTol ’ , [1 e−4 ;0] , ’ L inear ’ , ’ on ’) ;

% A gues s f o r t he i n i t i a l mesh and the s o l u t i o n
%s o l = b v p i n i t ([−1 −0.5 0 0 .5 1] , [1 0]) ;
s o l i n i t =bvp in i t (l i n s p a c e (−1 ,1 ,9) , ze ro s (1 , 2)) ;

e = 1e−6;
i f strcmp (so lve r , ’ acdc ’) | | strcmp (so lve r , ’ acdcc ’)

opt ions=bvptwpset (opt ions , ’Lambdamin ’ , e) ;
end

s o l = bvptwp (@shockODE , @shockBC , s o l i n i t , opt ions) ;

% The f i n a l s o l u t i o n
f i g u r e ;
p lo t (s o l . x , s o l . y (1 , :)) ;
ax i s ([−1 1 −2.2 2 . 2]) ;
t i t l e ([’ There i s a shock at x = 0 when \ e p s i l o n =’ s p r i n t f (’%.e ’ , e) ’ . ’]) ;
x l ab e l (’ x ’) ;
y l ab e l (’ s o l u t i o n y ’) ;

% −−−
% Nested f un c t i o n s −− e i s shared wi th the ou t e r f un c t i on .
%

f unc t i on dydx = shockODE(x , y , ExtraArgs)
%SHOCKODE Eva lua te t he ODE func t i on (v e c t o r i z e d)
i f narg in==3

e=ExtraArgs ;
end

pix = pi ∗x ;
dydx = [y (2 , :)

(−x .∗ y (2 , :) − e∗pi ˆ2∗ cos (pix) − pix .∗ s i n (pix))/ e] ;
end
% −−−

f unc t i on r e s = shockBC (ya , yb , ExtraArgs)
%SHOCKBC Eva lua te t he r e s i d u a l in the boundary c ond i t i o n s
i f narg in==3

e=ExtraArgs ;
end

7

r e s = [ya(1)+2
yb (1)] ;

end
% −−−

f unc t i on j a c = shockJac (x , y , ExtraArgs)
%SHOCKJAC Eva lua te t he Jacob ian o f t he ODE func t i on
% x and y are r e qu i r e d arguments .
i f narg in==3

e=ExtraArgs ;
end
j a c = [0 1

0 −x/e] ;
end
% −−−

f unc t i on [dBCdya , dBCdyb] = shockBCJac (ya , yb , ExtraArgs)
%SHOCKBCJAC Eva lua te t he p a r t i a l d e r i v a t i v e s o f t h e boundary c ond i t i o n s
% ya and yb are r e qu i r e d arguments .
i f narg in==3

e=ExtraArgs ;
end

dBCdya = [1 0
0 0] ;

dBCdyb = [0 0
1 0] ;

end
end % shock bvp twp

8

2.3.2 Example 2

A second example compares the final mesh obtained from four solvers without continuation. The
problem under consideration is

y′′ = εsinh(εy),
y(0) = 0, y(1) = 1. (5)

The following MATLAB function illustrates how bvptwp.m can be used to solve example (5).

f unc t i on sinh bvptwp ()
% sinh bvp twp
% compares the f i n a l mesh ob t a ined from four s o l v e r s w i t hou t c on t i nua t i on .
% The problem under c on s i d e r a t i o n i s
% y ’ ’ = e s inh (e y) ,
% wi th boundary c ond i t i o n s
% y (0) = 0 , y (1)=1.
%
% For t h i s problem :
% Function f i s v e c t o r i z e d
% Ana l y t i c a l Jacob ians are not implemented
% RelTol i s t h e same f o r bo th components
% Pr in t i n g s t a t i s t i c s a f t e r s o l v i n g i s enab l ed
%

opt ions = bvptwpset (’ Vector i zed ’ , ’ on ’ , . . .
’ RelTol ’ ,1 e − 8 , . . .
’ L inear ’ , ’ o f f ’ , . . .
’NMax ’ , 1 0 0 0 , . . .
’ S ta t s ’ , ’ on ’) ;

% A gues s f o r t he i n i t i a l mesh and the s o l u t i o n
s o l = bvp in i t (l i n s p a c e (0 , 1 , 1 8) , [0 , 0]) ;

e = 5 . 32675 ;

% uses d e f e r r e d c o r r e c t i o n wi th MIRK methods
opt ions = bvptwpset (opt ions , ’ So lve r ’ , ’ twpbvp m ’) ;
s o l 1 = bvptwp (@sinhODE , @sinhBC , so l , opt ions) ;

% uses d e f e r r e d c o r r e c t i o n wi th MIRK methods and c ond i t i o n i n g
opt ions = bvptwpset (opt ions , ’ So lve r ’ , ’ twpbvpc m ’) ;
s o l 2 = bvptwp (@sinhODE , @sinhBC , so l , opt ions) ;

% uses d e f e r r e d c o r r e c t i o n wi th Loba t to methods
opt ions = bvptwpset (opt ions , ’ So lve r ’ , ’ twpbvp l ’) ;
s o l 3 = bvptwp (@sinhODE , @sinhBC , so l , opt ions) ;

% uses d e f e r r e d c o r r e c t i o n wi th Loba t to methods and c ond i t i o n i n g
opt ions = bvptwpset (opt ions , ’ So lve r ’ , ’ twpbvpc l ’) ;
s o l 4 = bvptwp (@sinhODE , @sinhBC , so l , opt ions) ;

%%% Nested f unc t i on s , e i s shared wi th the ou t e r f un c t i on

f unc t i on dydx = sinhODE(x , y)
% Eva lua te t he ODE func t i on (v e c t o r i z e d)
dydx = [y (2 , :)

e∗ s inh (e∗y (1 , :))] ;
end

9

f unc t i on r e s = sinhBC (ya , yb)
% Eva lua te t he r e s i d u a l in the boundary c ond i t i o n s
r e s = [ya (1)

yb(1)−1] ;
end

end

The output is:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
So lve r twpbvp m .
The s o l u t i o n was obta ined on a mesh o f 42 po in t s .
The maximum s c a l e d e r ro r i s 6 .897 e +00.
There were 60 c a l l s to the ODE f unc t i on .
There were 23 c a l l s to the BC f unc t i on .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
So lve r twpbvpc m .
The s o l u t i o n was obta ined on a mesh o f 47 po in t s .
The maximum s c a l e d e r ro r i s 5 .208 e−01.
There were 60 c a l l s to the ODE f unc t i on .
There were 23 c a l l s to the BC f unc t i on .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
So lve r twpbvp l .
The s o l u t i o n was obta ined on a mesh o f 40 po in t s .
The maximum s c a l e d e r ro r i s 5 .307 e +00.
There were 60 c a l l s to the ODE f unc t i on .
There were 22 c a l l s to the BC f unc t i on .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
So lve r twpbvpc l .
The s o l u t i o n was obta ined on a mesh o f 41 po in t s .
The maximum s c a l e d e r ro r i s 3 .515 e +00.
There were 60 c a l l s to the ODE f unc t i on .
There were 22 c a l l s to the BC f unc t i on .

10

