
CG DESCENT Version 1.1
User’s Guide ∗

William W. Hager† Hongchao Zhang‡

December 10, 2004

∗This material is based upon work supported by the National Science Foundation under
Grant No. CCR-0203270.

†hager@math.ufl.edu, http://www.math.ufl.edu/∼hager, PO Box 118105, Department
of Mathematics, University of Florida, Gainesville, FL 32611-8105. Phone (352) 392-0281.
Fax (352) 392-8357.

‡hzhang@math.ufl.edu, http://www.math.ufl.edu/∼hzhang, PO Box 118105, Depart-
ment of Mathematics, University of Florida, Gainesville, FL 32611-8105.

1



1 Introduction

This document provides a guide for using the Fortran 77 code cg descent,
an implementation of the conjugate gradient algorithm for which the search
directions are always descent directions. The code along with the papers
[1, 2] developing the algorithm and comparing its convergence properties to
that of other algorithms for unconstrained optimization are posted at the
following web site:

http://www.math.ufl.edu/∼hager/papers/CG

In this manual, we explain the design of the software and how to use it.
The conjugate gradient method is an approach for solving an uncon-

strained optimization problem of the following form:

min {f(x) : x ∈ <n},

where f : Rn 7→ R is continuously differentiable. The iterates xk, k ≥ 0, in
conjugate gradient methods satisfy the recurrence

xk+1 = xk + αkdk,

where the stepsize αk is positive, and the directions dk are generated by the
rule:

dk+1 = −gk+1 + βkdk, d0 = −g0.

In cg descent, we make the following special choice for the parameter βk:

βk = max {Bk, ηk} , where

ηk =
−1

‖dk‖min{η, ‖gk‖}
,

Bk =
1

dT
k yk

(
yk − 2dk

‖yk‖2

dT
k yk

)T

gk+1.

Here η > 0 is a user specified constant.
The stepsize αk is computed by a line search routine that exploits a

combination of secant and bisection steps for fast convergence. The line
search is terminated when the Wolfe conditions [3, 4] are satisfied. Defining
φ(α) = f(xk + αdk), these conditions are:

δφ′(0) ≥ φ(αk)− φ(0)

αk

and φ′(αk) ≥ σφ′(0), (1)

2



where 0 < δ ≤ σ < 1.
In [1] we observe that the first condition in (1) is difficult to implement

numerically since the subtraction φ(αk) − φ(0) is relatively inaccurate near
a local minimum. To cope with this numerical inaccuracy, we introduce the
approximate Wolfe conditions in [1] and [2]:

(2δ − 1)φ′(0) ≥ φ′(αk) ≥ σφ′(0), (2)

where 0 < δ < 1/2 and δ ≤ σ < 1. The first inequality in (2) is an
approximation to the first inequality in (1). In a neighborhood of a local
minimum, this approximation can often be evaluated more accurately than
the original condition. The approximate Wolfe conditions are employed only
when

φ(αk) ≤ φ(0) + εk, (3)

where εk is an estimate for the error in the function value at iteration k. We
incorporate the following possible expressions for the error in the function
value:

εk = εCk or εk = ε, (4)

where ε is a small, user specified parameter, and Ck is generated by the
following recurrence:

Qk = 1 +Qk−1∆, Q−1 = 0,
Ck = Ck−1 + (|f(xk)| − Ck−1)/Qk, C−1 = 0.

}
(5)

Here ∆ ∈ [0, 1] is a parameter used in the averaging of the previous absolute
function values. As ∆ approaches 0, we give more weight to the most recent
function values. Since there is no theory to guarantee convergence when
using the approximate Wolfe conditions, one of the code’s parameters allows
the user to employ only the standard Wolfe conditions. But by default,
the code uses the approximate Wolfe conditions when (3) holds since we
observe greater accuracy and efficiency when these conditions are utilized.
Alternatively, by setting the parameter AWolfe to false, the code initially
computes points satisfying the usual Wolfe conditions until the following
inequality is satisfied:

|f(xk+1)− f(xk)| ≤ ωCk. (6)

Thereafter, the code switches to the approximate Wolfe conditions.

3



2 Running the code

cg descent requires a parameter file cg.parm, which should be placed in
the same directory where the code is run, and subroutines to evaluate the
function f(x) and the gradient ∇f(x). The arguments of the subroutine are
the following:

1. grad tol (double) – specifies the desired accuracy in the solution. If
StopRule in cg.parm is true, then the code terminates when

‖∇f(x)k‖∞ ≤ max{grad tol,StopFac ∗ ‖∇f(x0)‖}, (7)

where ‖ · ‖∞ denotes the sup-norm (maximum absolute component of
the vector). If StopRule is false, then the code terminates when

‖∇f(x)k‖∞ ≤ grad tol(1 + |f(xk)|). (8)

The code also terminates when

−αkφ
′(0) ≤ feps|f(xk+1)|, (9)

where the default value of feps in cg.parm is 0.d0.

2. x (double) – array of length n containing the starting guess on input
and computed minimizer on output.

3. n (int) – problem dimension.

4. cg value (external) – name of the routine to evaluate the cost function
f(x). cg value (f, x, n) puts the value of the cost function in
the double precision variable f, where x is a double precision array
containing the vector x.

5. cg grad (external) – name of the routine to evaluate the gradient
∇f(x). cg grad (g, x, n) puts the gradient of the cost function
in the double precision array g, where x is a double precision array
containing the vector x.

6. status (int) – the value indicates how the code terminates. As ex-
plained below, a nonzero value for status indicates abnormal termina-
tion.

4



7. gnorm (double) – if Step in cg.parm is .true., then gnorm contains
a guess for the line search minimizer at k = 0; in other words, gnorm is
the user’s approximation to a value of α > 0 that minimizes f(x0−αg0).
If Step is .false., then gnorm is ignored at startup, and the code
generates its own starting guess. On termination, gnorm contains
‖∇f(xk)‖∞.

8. f (double) – value of f(xk) at the final iteration.

9. iter (int) – number of iterations that were performed.

10. nfunc (int) – number of times the function was evaluated.

11. ngrad (int) – number of times the gradient was evaluated.

12. d (double) – work array of length n containing the search direction.

13. g (double) – work array of length n containing the gradient.

14. xtemp (double) – work array of length n containing xk + αdk.

15. gtemp (double) – work array of length n containing ∇f(xk + αdk).

The values of status and their meaning are list below:

0 – The convergence tolerance specified by grad tol was satisfied.

1 – Terminated with −αkφ
′(0) ≤ feps|f(xk+1)|.

2 – The maximum number of iterations exceeded the limit maxit specified
through cg.parm.

3 – The slope φ′(α) is always negative for a sequence of values of α becom-
ing very large.

4 – The number of secant iterations during the line search exceeds the value
of nsecant (default 50) given in cg.parm.

5 – The current search direction is not a direction of descent. According
to the theory in [1, 2], the search direction should be a direction of
descent for f .

6 – The line search has failed in the initialization part of the line search.

5



7 – The line search has failed in the bisection step.

8 – The line search has failed in the interval update routine.

We illustrate the use of cg descent with the problem:

min
n∑

i=1

exi − xi

√
i,

and the starting guess xi = 1 for each i. The following code shows how to
set up the problem and invoke the subroutine:

integer m
parameter (m = 100000)
double precision x (m), d (m), g (m), xtemp (m), gtemp (m),

& gnorm, f
integer i, n, status, iter, nfunc, ngrad
external myvalue, mygrad
n = 100
do i = 1, n

x (i) = 1.d0
enddo
call cg descent (1.d−8, x, n, myvalue, mygrad, status,

& gnorm, f, iter, nfunc, ngrad, d, g, xtemp, gtemp)
end

subroutine myvalue (f, x, n)
double precision x (1), f, t
f = 0.d0
do i = 1, n

t = i
t = dsqrt (t)
f = f + dexp (x (i)) − t*x (i)

enddo
return
end

subroutine mygrad (g, x, n)
double precision g (1), x (1), t

6



do i = 1, n
t = i
t = dsqrt (t)
g (i) = dexp (x (i)) − t

enddo
return
end

The following output is generated when the code is run:

Termination status: 0
Convergence tolerance for gradient satisfied
absolute largest component of gradient: 0.7200D−08
function value: −653.07867273306
cg iterations: 31
function evaluations: 54
gradient evaluations: 43

The algorithm parameters are specified in the file cg.parm, which the
code reads at the start of execution. Hence, this file should be placed in the
directory where the code is run. A list of the parameters and their default
values appears in Table 1. We now give an overview of these parameters:

• The maximum number maxit of iterations allowed by the code is
maxit fac*n, where n is the problem dimension. By default, maxit
is 500*n. We also impose limits in the line search. The maximum
number of secant steps is nsecant and the maximum number of ex-
pansions when we try to find an initial bracketing interval in the line
search is nexpand.

• The code automatically computes an initial step for the very first con-
jugate gradient iteration. This automated guess can be crude. If the
user wishes to provide the starting guess for a minimizer of f(x0−αg0)
over α > 0, then set the parameter Step to .true., and in this case,
the value of the gnorm argument of cg descent should be the initial
guess.

• If AWolfe is true, then the codes terminates the line search when-
ever either the ordinary Wolfe conditions (1) or the approximate Wolfe
conditions (2) are satisfied along with (3). If AWolfe is false, then

7



Value Parameter Value Parameter
.1d0 δ 1.0d0 restart fac
.9d0 σ 500.d0 maxit fac

1.d−6 ε 0.d0 feps
.5d0 θ .7d0 Qdecay
.66d0 γ 50 nexpand
5.0d0 ρ 50 nsecant
.01d0 η .true. PertRule
.01d0 ψ0 .true. QuadStep
.1d0 ψ1 .false PrintLevel
2.d0 ψ2 .true. PrintFinal

1.d−12 QuadCutOff .true. StopRule
.0d0 StopFac .true. AWolfe

1.d−3 AWolfeFac .false. Step
.false. debug

Table 1: Parameters in file cg.parm and their default values.

the code initially computes points satisfying the usual Wolfe condi-
tions until the the inequality (6) is satisfied. Thereafter, AWolfe is
set to true. By default, the code tests the approximate Wolfe con-
ditions when (3) holds. The parameter ω in (6) is the same as the
parameter AWolfeFac in the parameter file. To completely by-pass
the approximate Wolfe conditions, the value of AWolfe is set to false
and AWolfeFac is set to 0.

• The parameter ε is used in (3) to obtain an estimate εk for the error in
the function value. This estimate for the error governs when we use the
approximate Wolfe conditions, and it enters into the update rules in
the line search. The parameter ∆ in (5) is the same as the parameter
Qdecay in the parameter file.

• If PertRule is true, then we take εk = εCk in (4). Otherwise, we take
εk = ε

• If debug is true, then in each iteration, we check whether f(xk+1) ≤
f(xk) + 10−10Ck, where Ck is generated in (5). When this inequality is
violated, execution stops.

8



• By default, execution is terminated when (7) holds. By setting the
parameter StopRule to false, execution terminates when (8) holds.
The code also terminates when (9) holds. By default feps is 0.d0,
and the condition (9) has no effect. The user may wish to terminate
execution when the change in function value becomes negligible, in
which case feps should be set to a small positive value, typically much
smaller than the machine epsilon.

• By default, the code prints the results of the run, excluding the value
of x. To by-pass this printout, set PrintFinal to false. By default,
the code delays all printing until the end of the run. To obtain de-
tailed information concerning the line search and the convergence, set
PrintLevel to true.

• As explained in [2], conjugate gradient methods preserve their n-step
convergence property when the line search involves a “quadratic step.”
By default, the code attempts to make such a quadratic step. To
deactivate this step, set QuadStep to .false. . The quadratic step
is only attempted when the relative change in the function value for
consecutive iterations is larger than QuadCutOff. If the relative
change is tiny, then the quadratic step can be inaccurate, and it is
skipped.

• The number nrestart of conjugate gradient iterations before perform-
ing the restart dk = −gk is restart fac*n. By default, restart fac
is 1 and nrestart is n.

• In computing an initial bracketing interval in the line search, we eval-
uate φ(α) for a series of α’s, each new value of α is ρ times its prede-
cessor. The default value for ρ is 5. In some cases, however, it could
be necessary to decrease ρ, while preserving the relation ρ > 1.

• The parameters δ, σ, θ, γ, and η are connected with the line search, ter-
mination conditions, and the formula for βk. These parameters could
be fine tuned to improve performance in some applications. The fol-
lowing inequalities should be maintained: 0 < δ < .5, δ ≤ σ < 1, η > 0,
ε ≥ 0, 0 < θ < 1, and 0 < γ < 1.

• The parameters ψ0, ψ1 and ψ2 are all used in generating the initial
stepsize in the line search, as explained in [2].

9



3 Trouble shooting

We now discuss the error messages and their possible cause. If the argument
grad tol of cg descent is so small that the tolerance cannot be achieved
(due to rounding errors in the evaluation of the function and its gradient),
then the code can terminate in several abnormal ways. For example, the
iterations could continue until the iteration limit maxit is reached; also,
numerical errors in the line search might lead to termination. In the example
given above, when we change the argument 1.d−8 to 1.d−20, we generate
the following output:

Termination status: 4
Line search fails, too many secant steps
- your tolerance (grad tol = 0.1000D−19) is too strict
absolute largest component of gradient: 0.1776D−14
function value: −653.07867273306
cg iterations: 217
function evaluations: 532
gradient evaluations: 707

Observe that the gradient is relatively small, however, we did not reach the
requested tolerance 1.d−20.

The parameter feps in cg.parm provides another mechanism to termi-
nate execution when the code has essentially attained the highest possible
accuracy. If we set grad tol to 1.d−20 and we change the value of feps
in cg.parm to 1.d−25, then the the following output is generated:

Termination status: 1
Terminating since change in function value ≤ feps*|f|
absolute largest component of gradient: 0.1910D−13
function value: −653.07867273306
cg iterations: 52
function evaluations: 75
gradient evaluations: 85

The default value for feps is 0.d0, in which case this termination condition
has no effect.

The parameter ε in cg.parm is used to obtain an estimate εk in (3) for
the error in the function value. This estimate is used in the approximate

10



Figure 1: Rounding errors near a local minimum leading to an artificial hump
in the numerical f

Wolfe conditions and in the update rules for a bracket interval in the line
search. If εk is too small, then an error can arise in the line search near a
local minimizer; numerically, we can have φ(α) > φ(0)+ εk, while with exact
arithmetic, φ(α) < φ(0). Hence, the code thinks the function looks like the
graph depicted in Figure 1, when the actual function is monotone decreasing
on the interval [0, α]. In other words, the hump seen in Figure 1 may be
due to rounding errors. This discrepancy between numerical function and
true function leads to an error in the line search. For example, setting the
parameter ε in cg.parm to 0.d0 yields the following output:

Termination status: 8
Line search fails
Possible causes of this error message:
- your tolerance (grad tol = 0.1000D−07) is too strict
- your gradient routine has an error
- the parameter epsilon in cg.part is too small
absolute largest component of gradient: 0.8624D−07
function value: −653.07867273306
cg iterations: 29

11



function evaluations: 103
gradient evaluations: 90

The default value 10−6 of ε in cg.parm is usually large enough to prevent this
type of failure, except in cases where the function vanishes at the computed
local minimum. When the function vanishes, the first form of εk in (3)
approaches zero as the iterations convergence, while the actual error typically
does not approach zero. In this case, where the function vanishes at the
local minimum, you may need to use the second form for the error, which
is activated by setting to .true. the parameter ERule in cg.parm. This
problem connected with the estimation of the error in function value arises
only when a high accuracy solution is computed. In the example just given,
where we set ε = 0.d0, we still computed a solution for which the absolute
largest component of the gradient is less than 10−7 and the computed cost is
correct to 14 significant digits.

If the code to evaluate the gradient of the cost function has an error, then
the line search can fail. For our previous example, changing the minus sign
to a plus sign in the code to evaluate the gradient yields:

Termination status: 6
Line search fails
Possible causes of this error message:
- your tolerance (grad tol = 0.1000D−07) is too strict
- your gradient routine has an error
- the parameter epsilon in cg.part is too small
absolute largest component of gradient: 0.1272D+02
function value: −399.63436462248
cg iterations: 1
function evaluations: 53
gradient evaluations: 52

One way to ensure that the gradient routine is correct is to use the ADI-
FOR software to automatically transform the routine for evaluating the cost
function into a routine for evaluating the gradient. Alternatively, if your
gradient routine is hand-coded, you can use finite difference approximations
to check whether the code is correct. That is,

(∇f(x))i =
f(x + sei)− f(x)

s
+O(s), (10)

12



where ei is the i-th column of the identity matrix. By taking a sequence of s’s
approaching zero, the finite difference approximation should first approach
the true gradient component, then diverge due to numerical errors connected
with the evaluation of the numerator of (10). In the following code, we check
the first component of the gradient in our model problem:

parameter (m = 100000)
double precision x (m), g (m), f, newf,

& t, rel, delta, approx
integer i, n
external myvalue, mygrad
n = 100
do i = 1, n

x (i) = 1.d0
enddo
call myvalue (f, x, n)
call mygrad (g, x, n)
delta = 1.e−1
t = x (1)
do i = 1, 12

x (1) = t + delta
call myvalue (newf, x, n)
approx = (newf − f)/delta
rel = dabs ((approx − g (1)) / g (1))
write (6, *) delta, rel, approx, g(1)
delta = delta/10

enddo
x (1) = t
end

The output generated by this code appears in Table 2. Observe that for
s between 10−1 and 10−7, the relative error in the finite difference approxi-
mation decreases as it approaches the value of g (1), while for smaller s, the
error increases. On the other hand, for the erroneous gradient code, obtained
by replacing the minus sign in the gradient code by a plus sign, we obtain
the results given in Table 3. Of course, you should check all components of
the gradient, not just the first component.

13



s Relative Error Approximation g (1)
0.100E+00 0.818E−01 0.18588419549E+01 0.17182818285E+01
0.100E−01 0.794E−02 0.17319186558E+01 0.17182818285E+01
0.100E−02 0.791E−03 0.17196414225E+01 0.17182818285E+01
0.100E−03 0.791E−04 0.17184177472E+01 0.17182818285E+01
0.100E−04 0.791E−05 0.17182954196E+01 0.17182818285E+01
0.100E−05 0.807E−06 0.17182832153E+01 0.17182818285E+01
0.100E−06 0.212E−06 0.17182821921E+01 0.17182818285E+01
0.100E−07 0.220E−05 0.17182856027E+01 0.17182818285E+01
0.100E−08 0.220E−04 0.17183197087E+01 0.17182818285E+01
0.100E−09 0.551E−04 0.17183765522E+01 0.17182818285E+01
0.100E−10 0.237E−02 0.17223555915E+01 0.17182818285E+01
0.100E−11 0.255E−01 0.17621459847E+01 0.17182818285E+01

Table 2: Output generated by correct gradient routine

s Relative Error Approximation g (1)
0.100E+00 0.500E+00 0.18588419549E+01 0.37182818285E+01
0.100E−01 0.534E+00 0.17319186558E+01 0.37182818285E+01
0.100E−02 0.538E+00 0.17196414225E+01 0.37182818285E+01
0.100E−03 0.538E+00 0.17184177472E+01 0.37182818285E+01
0.100E−04 0.538E+00 0.17182954196E+01 0.37182818285E+01
0.100E−05 0.538E+00 0.17182832153E+01 0.37182818285E+01
0.100E−06 0.538E+00 0.17182821921E+01 0.37182818285E+01
0.100E−07 0.538E+00 0.17182856027E+01 0.37182818285E+01
0.100E−08 0.538E+00 0.17183197087E+01 0.37182818285E+01
0.100E−09 0.538E+00 0.17183765522E+01 0.37182818285E+01
0.100E−10 0.537E+00 0.17223555915E+01 0.37182818285E+01
0.100E−11 0.526E+00 0.17621459847E+01 0.37182818285E+01

Table 3: Output generated by erroneous gradient routine

14



References

[1] W. W. Hager and H. Zhang, A New Conjugate Gradient Method
with Guaranteed Descent and an Efficient Line Search, Department of
Mathematics, University of Florida, November 17, 2003 (revised July
10, 2004).

[2] W. W. Hager and H. Zhang, CG DESCENT, a Conjugate Gradient
Method with Guaranteed Descent, Department of Mathematics, Univer-
sity of Florida, January 12, 2004 (revised December 10, 2004).

[3] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev., 11
(1969), pp. 226–235.

[4] P. Wolfe, Convergence conditions for ascent methods II: some correc-
tions, SIAM Rev., 13 (1971), pp. 185–188.

15


