dSPIN: A Dynamic Extension of SPIN

Claudio Demartini', Radu Iosif', and Riccardo Sisto!

Dipartimento di Automatica e Informatica, Politecnico di Torino
corso Duca degli Abruzzi 24, 10129 Torino, Italy
demartini@polito.it, iosif@athena.polito.it, sisto@polito.it

Abstract. The SPIN extension presented in this article is meant as a
way to facilitate the modeling and verification of object-oriented pro-
grams. It provides means for the formal representation of some run-time
mechanisms intensively used in OO software, such as dynamic object
creation and deletion, virtual function calls, etc. This article presents a
number of language extensions along with their implementation in SPIN.
We carried out a number of experiments and found out that an impor-
tant expressibility gain can be achieved with at most a small loss of
performance.

1 Introduction

It is nowadays a common approach to use concurrent programming along with
object-oriented techniques in order to increase robustness and re-usability of con-
current software. A number of new problems in software design and verification
arise due to the increase in program complexity, namely run-time complexity.
As an obvious consequence, formal verification of this kind of software requires
special features. A previous attempt to elaborate formal models of OO pro-
grams is presented in [3]. It regards the possibility of automatically generating
PROMELA models of programs written in sC++, a concurrent extension of
C++. However, the modeling approach used has an important number of limi-
tations, in particular the lack of models for: object creation and deletion, pointer
and reference variables, polymorphic function calls.

Our previous experience regarding the translation of Java programs into
PROMELA is presented in [4]. One of the critical aspects in our model regards
object creation. We discovered that dynamic object creation can be represented
in PROMELA in several ways but always in exchange of an important increase in
memory requirements for verification. The approach used for Java multithread-
ing applications regarded both passive and active objects (i.e., thread objects)
and used predefined vectors of a maximal size in order to keep the object data.
An index into the vector was used as a pointer (reference) to the object. In
addition to the fact that the number of created objects is strongly bound by
the maximal vector size, the model does not cover type casting operations and
polymorphism, because of the lack of underlying support for representing this
kind of information within SPIN.

An analysis of the Java run-time system led us to the conclusion that imple-
menting the following features in PROMELA would suffice in order to efficiently
model any kind of Java construct!:

— object references.

— dynamic object creation.

— function definition and call.
— function code reference.

In the following we refer to the above presented mechanisms as dynamic features,
intended as representations of dynamic information regarding the program. Here
we distinguish between static and dynamic information, the former referring to
the program information that can be known at compile-time using static analysis
techniques (e.g., data flow analysis) while the later referring to information that
occurs while the program is running.

The SPIN extension presented in this article is called dSPIN, which stands
for dynamic SPIN. Its intention is to provide SPIN with a number of dynamic
features which allow for object-oriented programs to be modeled in a natural
manner and efficiently verified. The new features introduced by dSPIN can be
divided into:

— memory management features concerning dynamic memory allocation
and reference mechanisms.

— functional management features concerning function declaration, call and
reference but also local scoping.

Even if the above mentioned mechanisms are currently implemented in both
the SPIN simulator and model checker our attention focuses on the implemen-
tation of the model checker and, specifically on the changes made to the rep-
resentation of the program state and transition system. We tried to exploit the
standard philosophy as much as possible in order to achieve a high degree of
compatibility with the SPIN distribution. Nevertheless, new aspects had to be
introduced in order to ensure the correctness of dSPIN verifications and their
compliance with the complexity reduction mechanisms used by SPIN.

The paper is organized as follows: Sect. 2 presents the language features, while
Sect. 3 is concerned with their implementation in dSPIN. Sect. 4 discusses the
backwards compatibility with the original software and finally Sect. 5 presents
some experimental results.

2 The Language Features

In order to make this paper self-contained, the present section discusses the syn-
tax and semantics of the main extensions added to PROMELA in dSPIN. A full
description of the dSPIN language extension can be found in [5]. As already men-
tioned, we classify dynamic features into memory management and functional

! We did not mentioned exception handling because SPIN 3.2.4 already provides sup-
port for it by means of a different interpretation of the unless construct.

management features. Memory management regards the possibility of referring
memory objects, namely statically declared and dynamically allocated variables,
as well as memory allocation and release mechanisms. Functional management is
concerned with function declaration and call, function code reference mechanism
and local scoping (visibility) issues. The following covers the main issues of both
classes of extensions.

2.1 Memory Management

The main extension concerning dynamic memory management is the memory
reference mechanism, called briefly pointer. A pointer may hold at run-time a
reference to a previously defined or dynamically generated object. By object we
mean a variable of any type, including basic types, array types and user defined
types. In order to make use of pointers one should be able to assign and read
reference values, called left values, to and respectively, from them. Left values
are produced by the left-value operator and the new object creation statement,
presented later in this section.

Pointer Syntax and Semantics. A pointer variable is declared by prefixing
its name with the & (ampersand) symbol in the declaration. Unless it is initialized
in declaration, a pointer variable contains the null value, where null represents
a dSPIN literal that can be used in programs in order to denote the value of an
undefined pointer.

The use of pointers is quite simple because they do not need to be derefer-
enced. It is done automatically, according to the context. Let us consider first
the case when a pointer variable occurs on the left-hand side of an assignment
statement. In this case the assignment changes the pointer’s left value only if the
right-hand side of the assignment is a pointer variable, a left-value expression or
a new object creation expression. Otherwise, an assignment to a pointer changes
its right value that is, the value of the object to which it points. Any attempt
to change the right value of an undefined (null) pointer generates a run-time
error.

The second case to be considered is when a pointer occurs on the right-hand
side of an assignment. If the left-hand side variable is a pointer then the pointer
will evaluate to its left value, otherwise the pointer will evaluate to its right
value, namely the value of the object to which it actually points. In the last case
the pointer needs not be null, otherwise a run-time error will be raised.

Pointers can also be used along with comparison operators == and !=. An
equality comparison between two pointers evaluates to true if and only if their
left values are equal that is, if they point to the same object or they are both
null. In all other types of expressions and statements, a pointer will evaluate to
its right value.

The Left-Value Operator. The left-value operator is an unary operator (&)
which takes as argument any kind of variable of a basic, array or structured

type. It cannot be applied to a pointer variable. The left-value operator returns
a reference to its argument. This reference can then be assigned to a pointer
variable.

The New and Delete Statements. The new object creation statement, called
briefly the new statement, allocates an amount of memory in order to hold a
number of objects of any basic or structured type. The reference to the newly
allocated area is assigned to a pointer variable. The formal syntax for the new
statement is presented below:

<pointer> ’=’ new <type> [’[’ <bound> ’]’]

Here pointer stands for a pointer variable, type stands for any type name and
bound is an integer specifying the size in number of objects to be allocated. The
bound specifier is optional, the default size being of one object of the specified
type.

The object deletion statement, briefly called the delete statement performs
the reverse action i.e., it deallocates the memory space previously allocated by
a new statement. The formal syntax of a delete statement is presented below:

delete ’(° <pointer> ’)’

where pointer stands for a pointer variable. Only heap variables can be used
along with delete statements. Any attempt to delete a static variable raises a
run-time error.

Another point to be stressed here concerns the executability of the new and
delete statements. Both are always executable. The order in which objects can
be deleted does not depend on the order they were created that is, a process will
never block attempting to delete an object.

2.2 Functional Management

The main concept regarding functional management features is the function,
defined in dSPIN as it is in most programming languages: a function is a pa-
rameterized sequence of code whose execution may be invoked at a certain point
in the program and which, upon termination, makes control return immediately
after the invocation point. dSPIN functions are executed synchronously that is,
the caller process execution thread does not span, rather it is continued by the
function call. The statements contained within the function are executed with
interleaving along with other processes. The way functions are defined in dSPIN
allows for recursiveness in a natural manner.

Functions represent also “objects” supporting a reference mechanism. Indeed,
a function can be referred by a special kind of pointer, which provides a mean
to model polymorphic function calls used in most object-oriented languages.

Function Definition and Call. The syntax of function definition is similar to
the standard PROMELA proctype definition. Formally it looks like:

function <name> ’(’ <list> ’)’ [’:’ <type>]
’{’ (<declaration> | <statement>)* <statement>+ ’}’

where name stands for the function name, 1ist stands for the formal parameter
list and type is any type name (including pointer types) , specifying the function
return type. The return type is optional, which means that a function is not
required to return a value i.e., it can be a procedure. A function definition
also specifies the function body which consists of a number of declarations and
statements. It is required for a function to contain at least one statement.

Upon declaration the name of a function can occur within a function call
statement. In dSPIN statements of a function are executed with interleaving,
reflecting the behavior of real concurrent programs.

There are three types of function invocation statement. The first one concerns
only non-void functions i.e., functions for which the return type is specified in
definition. Its formal syntax is shown below:

<variable> ’=’ <name> ’(’ <list> ’)’

Here variable stands for a declared variable identifier, name stands for a de-
clared function name, and list for the function actual parameter list. This
statement causes function name to be called, its return value being assigned to
variable.

A function may return a value by means of the dSPIN return statement,
formally specified as:

return [<expression>]

where expression stands for any expression that can be atomically evaluated.
The return statement causes control to leave the function body and return to
the statement immediately below the invocation point. The return expression
is only required when the return statement occurs within a non-void function
definition.

For procedures i.e., functions for which the return type is not specified or
the return value is not of interest at the invocation point, there is a more simple
type of invocation:

<name> ’ (’ <list> ’)°

Here name stands for a procedure name and 1ist for the actual parameter list.
The above statement causes function name to be called with actual parameters
from 1list, any possible return value being discarded.

The third and last type of function invocation statement was introduced in
order to facilitate the writing of tail-recursive functions. It has the following
formal syntax:

return <name> ’(’ <list> ’)°?

where name stands for a non-void function name and list specifies the actual
parameter list for the function invocation. This statement causes the function
name to be called, its return value being passed back as the return value of the
caller function.

A process attempting to execute a function call statement will always pass
to the first statement of the function without blocking. Analogously, a return
statement is always executable. However, the executability of a function call
statement depends on the executability of the statements residing inside the
function body, therefore it cannot be evaluated a priori. For this reason, function
call statements cannot be used within deterministic regions of code (i.e., d_step
sequences).

Function Pointers. As previously mentioned, functions represent objects which
can be referred using a special kind of variables called function pointers. A
pointer to a function actually holds a reference to the beginning of the function
code.

A function pointer is declared as a variable of a predefined type named ftype.
Unless initialized in declaration, a function pointer is undefined i.e., its value is
null. A function pointer can be assigned a reference to any declared function.
Upon assignment, the function pointer can be used in any form of function
invocation statement, instead of the function name.

Local Scopes. The notion of function introduces also the concept of local scope
for variables. Variables can be declared inside a function, being visible only
within the function scope. Moreover, a local scope can be declared inside a
process, function or local scope by enclosing the program region into curly braces.
Local scopes can be nested and the same variable name can be used in different
scopes without conflicts. Variables defined within a local scope are automatically
initialized when the control enters the scope.

3 Implementation Issues

This section presents some issues regarding the implementation of the dynamic
features discussed in Sect. 2 in dSPIN. As a first remark, let us note that almost
all language extensions previously mentioned require dynamic memory space
that is, the ability to dynamically increase or decrease the amount of memory
used by the current program state. This appears obvious in the case of new
and delete statements and moreover, function calls require the caller process
to expand in order to hold the function actual parameters and local variables. A
linear representation of the current state (i.e., state-vector representation) would
not be convenient for our purposes, because every dynamic increase or decrease of
the memory space could require the relocation of many components of the state
(e.g., processes, queues, variables), affecting the overall performance of the model
checker. Our solution was to adopt a different representation for the current

global variables
global queues
—— | heap area
iocgll variables
local queves
] process 1
/ | process?2
'/ .
] .
L | processn

Fig. 1. The State Structure

state. This representation is non-linear, rather composed of a number of different
vectors. In the following we will refer to the current state representation as the
state structure. Fig. 1 depicts the general organization of the state structure.

All memory areas that may shrink or expand are organized into separate
vectors of variable sizes. There is one vector for each currently active process,
which we refer to as process vector and another global one called heap area used
to hold global data and dynamically created objects. Global variables and queues
reside at the beginning of the heap area, while local variables and queues are
kept at the beginning of the process vector.

Static variables (i.e., variables explicitly declared in the program) are assigned
an offset into the containing vector, global variables being represented by heap
offsets, while local variables being defined by offsets into the process vector
that contains them. This representation of variables somehow contrasts with
the standard SPIN representation because SPIN directly converts PROMELA
variables into C variables of the corresponding type. In dSPIN we use type
information to compute the storage size of a variable and determine its offset.

An important point which needs to be stressed here regards the way in which
the state structure representation affects state comparisons and storage per-
formed by the model checker during verification runs. The standard version of
SPIN takes great advantage from the linear state representation (i.e., state-
vector) in order to optimize the run-time performance of the model checker.
Indeed, the comparisons between states are implemented as byte-vector com-
parisons. Moreover, state-space storing procedures (e.g., hash indexing store,
minimized automaton store?) are byte-vector operations. For example, the com-
putation of a hash index takes only one pass through the vector in order to
accomplish its task. As previously discussed, the state structure representation
keeps the state information organized into several vectors of various sizes. Mak-
ing the state comparison and store routines iterate through all vectors that make
up the state structure greatly decreases the run-time performance of the model

2 dSPIN considers only the storing techniques used up to and including SPIN version
3.2.0

State comparison

STATE STATE ate compressio
STRUCTURE _ VECTOR P

state storage

TRANSITION
SYSTEM

Fig. 2. The State Structure Linearization

checker. Also state compression can be difficult to implement when using a non-
linear structure.

The implementation solution used in dSPIN interfaces the state structure
representation with linear comparison, compression and storing techniques by
first performing a linearization of the state. The linear representation of the
state is subsequently referred to as the state wvector. It is obtained from the
state structure by copying the relevant state information from the heap area
and process vectors into the state vector. The state vector uniquely identifies
the state that is, every state change into the state structure is reflected into
the corresponding state vector. This is then used along with state comparison
and storing routines instead of the original state structure representation. Fig. 2
shows the use of the state structure along with standard SPIN comparison,
compression and storage routines.

3.1 Implementation of New and Delete Operations

As already mentioned, dynamically allocated objects are modeled into the heap
area. A dynamic object is represented by an integer index into two tables that
keep the information needed in order to locate the object. The first table holds
the offset of the object into the heap area, while the second one holds the object
size. In the following, we will refer to the first table as the offset table and to
the second one as the size table. The representation of dynamic objects somehow
resembles the representation of message channels within standard SPIN.

A new operation takes as parameters a type specifier and a number of ele-
ments of the specified type in order to compute the storage size of the object.
The heap area is then increased by the size increment in order to contain the
newly created object, the first free slot into the offset and size tables is found and
the retrieval information is written into the tables. In order to avoid false partial
matches of the state structure the type of a newly created object is encoded at
the end of the object area. Finally, the new operator returns the table index
of the object that is subsequently used to compute the actual reference to the
object data.

A delete operation receives as parameter a reference to the object that is
intended to be deleted. Such a reference specifies the index number of the object

that is, its index into the offset and size tables. The heap area is decreased by a
decrement equal to the size of the object. Unless the deleted object was placed
at the end of the heap area, a compaction of the heap area is needed in order to
avoid memory losses caused by fragmentation. In practice, the compaction is a
simple operation which involves only the relocation of the objects and message
channels situated after the deleted object into the heap area by decreasing their
offset values by the size of the deleted object. The run-time overhead of heap
compaction is therefore limited.

3.2 Implementation of Object References

The object reference mechanism called pointer was presented in Sect. 2. Let
us recall that a pointer can hold a reference to a statically declared local or
global variable or to a heap variable. We distinguish among three kinds of ob-
ject reference: the local variable reference, the global variable reference and the
heap variable reference. The implementation of object references follows a sym-
bolic approach that is, rather than storing the physical memory address into the
pointer variable we have chosen to encode the information needed to locate the
object into the pointer by using a symbolic format. This approach allows for an
easy run-time check of dangling references. In the following, we model pointers
as unsigned 32-bit integers®. The first two bits of the integer are used to encode
the reference type, which may be one of the above mentioned.

A reference to a local variable uses the next 6 bits in order to encode the
declaring process identifier. This allows for local variables from at most 25 pro-
cesses to be referred. The last 24 bits will hold the local variable offset into the
process vector, allowing for a maximum of 222 different 32-bit integer objects to
be referred inside a process vector.

The global variable reference uses all remaining 30 bits for the representation
of the variable offset within the heap area. This allows for a maximum of 228
different 32-bit integer objects to be referred inside the heap area.

The heap variable reference uses the remaining 30 bits in order to keep the
object index number that uniquely identifies the heap object. This allows for a
maximum of 230 different heap objects to be referred.

3.3 Implementation of Functional Management Mechanisms

It was mentioned in the presentation of the state structure that every active
process in the system is represented by a separate vector of a variable size. This
implementation choice was inspired by the real world run-time systems that use
a separate stack for every process in order to hold the actual values of function
parameters and local variables during a function call. Fig. 3 shows in more detail
the organization of the process vector as implemented in dSPIN.

The process vector is composed of a static area situated at the beginning,
which we will refer to as the prefiz. It contains information regarding control

3 The implementation of pointers on different architectures requires minimal changes.

process prefix ___..____________ stack pointer

base pointer
current stack frame

Fig. 3. The Process Vector

flow, such as process type and current state number. As in the standard version
of SPIN, this information is needed in order to identify the current process
transition from the transition table. Stack management is performed by means
of two variables, called stack pointer and base pointer, residing also in the prefix
area. The remainder of the process vector is referred to as the process stack.
The top offset of the process stack is pointed to by the stack pointer. The area
between the offset pointed to by the base pointer and the top offset is called the
current stack frame. It contains information regarding the currently executing
function, namely local variables and actual parameters, as well as function return
information.

Sect. 2 briefly mentioned a couple of aspects regarding the semantics of func-
tion calls. The first one we recall here states that the instructions contained in
a function are executed with interleaving along with other processes. As a con-
sequence of this, a function is represented by means of a separate finite state
machine having its own entry into the global transition table. A process that
makes a function call temporarily suspends the execution of its finite state ma-
chine and starts executing the function FSM. After a return from the function,
the execution of the caller process FSM is resumed. The second aspect regard-
ing the execution of function calls is that the caller process execution thread
is actually continued by the call. In order to give a more detailed explanation
of this, let us consider the linear sequence of states explored by the depth-first
search during verification. Let us consider also that the system is in state S,
just before performing a function call. After firing the function call transition a
new state S,1 is generated. This state reflects only the changes committed on
the caller process stack by the function call transition but it has no relevance
from the verification point of view that is, it does not carry information that
may be useful in order to check system properties. Therefore it makes no sense
to store this state in the state space. The first relevant state after the function
call is generated by firing the first transition from the function body. Let us call
this state Sp. Fig. 4 shows the behavior of the model checker during a function
call.

The transitions depicted using dotted lines represent the function call and
return from function transitions. In the following, we denote this kind of tran-
sition a wvirtual transition. Even if it does not create a new state into the state
space, a virtual transition must be recorded on the trail stack in order to allow
the model checker to unwind it by performing a backward move.

A function call transition increases the process stack size by first pushing the
return information onto the stack that is, the current process type identifier and

caller callee

Fig. 4. The Function Call

state number. Following, the left value of the return variable is pushed onto the
stack. This is a reference to the object meant to keep the function return value,
if there is one. Finally, the current value of the base pointer is saved on the stack,
the base pointer is set to the current value of the stack pointer, and the process
prefix is actualized in order to reflect the control state change. This is done by
storing into it the function type identifier and the identifier of the function FSM
initial state in the process prefix area. At this point, the actual parameters are
evaluated and their values pushed onto the stack. It is to be mentioned that each
process local variable is uniquely identified by its offset relative to the beginning
of the stack frame. When the base pointer is set to the stack pointer value a new
stack frame is actually created, in order to hold the function parameters and
local variables that are not visible from the caller process scope?.

A return from function transition performs the reverse actions. First the
current stack frame is popped from the stack by simply setting the stack pointer
to the current value of the base pointer. Then the control flow information is
retrieved from the stack in order to resume the caller process type identifier
and state number. Finally the original stack frame is restored by assigning the
base pointer with the previously saved value. If the function returns a value
this is assigned to the object referred by the left value that was also saved
on the stack. Subsequently, the model checker attempts to fire the transition
immediately following the function call, resuming in this way the execution of
the caller process FSM.

The implementation of local scopes also makes use of the process stack mech-
anism. A local scope can be seen as a parameterless function call for which no
return information is needed because the transitions residing inside the scope
are part of the same finite state machine as the ones situated outside it.

Sect. 2 presents the function reference mechanism, called function pointer.
The implementation of function pointers uses a 32-bit integer value in order to
represent the information needed to uniquely identify a function object. The

4 The dSPIN language extension does not provide support for the dynamic binding of
variables.

first 16 bits are used to encode the function identifier that is, its entry into the
global transition table. This allow for a maximum of 26 different functions to
be referred. The last 16 bits are used to encode the state number of the function
FSM initial state. The function pointer implementation uses a symbolic approach
that allows for run-time consistency checks to be easily performed.

4 Backwards Compatibility

The previous section presented the implementation of the dSPIN language fea-
tures and discussed some issues related to the correctness of formal verifications
taking into account these new aspects. In the following, we will discuss the way
in which our implementation choices affect the standard SPIN complexity re-
duction techniques, considering state compressions and partial order reductions.
Some explanations regarding the run-time overhead introduced by dSPIN are
also given.

4.1 Compliance with State Compressions

Sect. 3 presented the state representation used in dSPIN and its use along with
the standard SPIN state comparison, compression and storage techniques. Let
us recall that all these techniques are based on a linear representation of states
in order to optimize the run-time performance of the model checker. In dSPIN a
non-linear state representation is used along with the standard approach, which
is made possible by linearization of the state structure. In the following, we
consider the two main state compression techniques used in SPIN, namely byte-
mask compression and recursive indexing compression (i.e., COLLAPSE mode)
[6]. These compression modes are the main ones in the sense that all other
compression routines (e.g., minimized automaton) take as input the state vector
already compressed by one of byte-masking or recursive indexing routines. An
important optimization of dSPIN was obtained by combining linearization with
one of the two above mentioned techniques. In this way, the state vector obtained
by applying linearization to the state structure representation is already in the
compressed form and can be used for further compressions, comparisons and
hash storing. The time taken up by linearization in this case is almost equal to
the time needed by the standard SPIN byte-mask or recursive indexing, yielding
a very small overhead in comparison with the original version. It is to be noted
that linearization combined with byte-mask compression can be implemented
using block copy operations yielding a further speed increase. In exchange, some
redundant information is copied into the state vector as it is the case of rendez-
vous queues which, unlike in the original byte-mask compression are copied along
with their containing vectors.

4.2 Compliance with Partial Order Reductions

The current version of SPIN uses a static partial order reduction of the inter-
leavings between processes known as a persistent set technique [10]. The imple-

mentation of partial order reduction in SPIN is based on a static analysis of the
processes in order to identify transitions that are safe. One case in which a tran-
sition is considered to be unconditionally safe regards any access to exclusively
local variables, as discussed in [7]. While in the standard PROMELA language
it is quite straightforward to find out if some identifier represents a local vari-
able, in dSPIN this is not so. Indeed, an access to a local variable referred by a
global pointer variable cannot be considered an unconditionally safe transition.
Moreover, by-reference parameter passing in function calls introduces similar
problems. As previously mentioned, a static analysis of the source code cannot
determine exactly the dynamic information, still a conservative approximation
of it can be obtained using data flow analysis techniques. Our solution, imple-
mented in dSPIN uses an iterative algorithm in order to solve what is known
as an aliasing problem [1]. The algorithm computes, for every non-pointer vari-
able accessed at a certain point in the program, an alias list that is the list of
all pointers that may refer it. The alias relation is symmetric, therefore every
pointer variable at a certain point in the program also has an associated list of
objects that it may point to. The safety condition is restricted. We consider a
transition to be unconditionally safe if none of the accessed variables is global or
has a global alias. More precisely, an access to a local variable that is aliased by
a global pointer, as well as an access to a pointer that refers a global object are
considered unsafe. By making this assumption we can only err on the conserva-
tive side, choosing not to apply partial order reduction in some cases where it
still can be safely applied, but never applying it for unsafe transitions.

A concurrent program represented in dSPIN consists of a set of processes
and functions. Every such entity is described by a reduced flow graph that is,
a graph whose nodes represent sequences of statements and whose edges repre-
sent possible control flow paths. A node of such a flow graph is also known as
a basic block. It is a sequence of consecutive statements in which flow of control
enters at the beginning and leaves at the end without possibility of branching
except at the end. Every basic block has an associated equation relating the alias
relationships among all variables at the beginning of the basic block with the
alias relationship at its end. The set of all such equations is known as the data-
flow equation system. Solving the data flow equation system means finding the
smallest conservative estimation of every basic block input and output relations.
It is done by an iterative algorithm that is a slightly modified version of the
ones described in [1]. The iteration is repeated for every process and function
flow graph, one at the time, until a stable solution is found that is, no more
changes occur to any input or output relation. In order to estimate the overall
complexity of the algorithm let us consider for every process an extended flow
graph obtained by adding to the original process flow graph the flow graphs of
all functions that may be called during its execution. As pointed out in [1], the
number of iterations through a depth-first ordered flow graph is bounded by the
depth of the flow graph which is at most logN, where N represents the number
of basic blocks in the extended flow graph. As a consequence, the complexity

of the entire data flow computation is O(NlogN) where N represents here the
maximum number of basic blocks over all process extended flow graphs.

5 Experimental Work

We have applied dSPIN to perform verification of a number of standard SPIN
specifications in order to make a performance comparison between the tools. The
experience we had analyzing standard examples is reported in the first part of
this section. The remainder reports a number of tests carried out with a dSPIN
specification of a concurrent B-tree structure in order to give a glimpse of the
tool’s capability of verifying programs that make use of dynamic information. °
Table 1 shows a comparison of the results obtained by verifying a number of
specifications with dSPIN and standard SPIN. All examples are taken from the
standard SPIN distribution and are denoted by the corresponding file name.

Table 1. Standard Examples

File States | Transitions | Memory | Time
(Mb) | (sec)
i. Using dSPIN
leader 108 108 1.373 0.1
leader2 28898 42274 7.065 1.1
sort 6965 6965 10.193 0.8
pftp 678785 917632 187.184 | 35.9

erathostenes | 444602 628697 180.121 | 24.3
ii. Using standard SPIN

leader 108 108 1.493 0.1
leader2 28898 42274 6.613 1.9
sort 6965 6965 9.276 1.9
pftp 678785 917632 191.957 | 59.3

erathostenes | 444602 628697 109.628 | 38.8

While the number of states and transitions are exactly the same in both cases,
we notice that dSPIN sometimes tends to use a slightly larger amount of memory
in exchange of a small verification speedup. The cause of this overhead resides in
our current implementation of byte-masking compression that uses block copy
operations in order to increase speed but at the same time copies from the state
structure some redundant information, as discussed in Sect. 4. However, the
memory overhead is limited and in most cases it does not increase with the
global number of states.

5 All analysis time reports are obtained from the Unix time command on a 256 Mb
RAM UltraSparc 30 at 300MHz workstation. Small times (under 0.5 seconds) tend
to be inaccurate because of the system overhead.

The experiments regarding the modeling of dynamic aspects have been car-
ried out using a B-tree structure [8] accessed concurrently by updater processes
that insert values into it. The system model was specified using pointer variables
as well as dynamic object creation and deletion operations. The mutual exclusion
protocol follows the approach described in [2]. Each node has an associated lock
channel used to ensure exclusive access to its data. When performing insertion
into a node, an updater process holds only the locks to its ancestors considered
to be unsafe (i.e., the safety property is verified for all nodes that do not split
due to an insertion). When a certain depth of the tree is reached, the updater
processes stop their execution, in order to avoid an unbounded growth of the
data structure. The B-tree example considered here is highly scalable, the scal-
ing parameters being the B-tree order, referred to as K, the B-tree maximum
depth, referred to as D and the number of updater processes, referred to as P.

Table 2 shows the results obtained by performing analysis of the model for
some different configurations of the scaling parameters. The last column of the
table specifies the compression modes activated by the corresponding compila-
tion options. Complexity increases exponentially with the maximum depth of

Table 2. The B-Tree Example

K,D, N States Transitions | Memory Time Options
(Mb) | (min:sec)
2,2,2 9215 18354 3.022 0:02.0 | COLLAPSE
2,2,3 300577 895141 9.886 1:44.2 | COLLAPSE
2,2,4 |2.87937e+06 | 1.12389e+4-07 | 66.417 23:27.6 | COLLAPSE
2,3,2 719925 1.50269e+06 | 40.330 3:03.5 | COLLAPSE
2,3,3 1.152e+06 | 3.40875e+06 | 3.150 5:54.9 BITSTATE
4,2,2 13019 25490 3.283 0:2.8 COLLAPSE
4,23 691256 2.0539e+06 | 19.060 4:03.2 | COLLAPSE
4, 2,4 |1.54303e+06 | 5.50518e+4-06 | 2.824 8:31.9 BITSTATE
4, 3,2 651896 1.30644e+06 | 4.009 2:27.3 BITSTATE
4, 3,3 |1.26746e+06 | 3.72083e+4-06 | 4.018 6:45.1 BITSTATE

the B-tree and the number of processes too. The most trivial cases were ver-
ified using the recursive indexing (i.e., COLLAPSE) compression mode, while
the others were analyzed approximatively using the supertrace technique (i.e.,
BITSTATE).

6 Conclusions

An extension of the model checker SPIN, providing support for modeling and
verification of programs that use dynamic mechanisms was presented. Here the
term “dynamic” has roughly the same meaning it has in the context of compiler
development, identifying the information that occurs exclusively at run-time. In

order to support the representation of dynamic information, some new concepts
were introduced at the front-end level, among them: pointer variables, new ob-
ject creation and deletion statements, function declarations and calls, function
pointers and local scopes. The implementation of these language extensions uses
an alternative representation for states that is interfaced with the existing state
compression and storage techniques of the standard SPIN version. Nevertheless,
new approaches had to be used for the representation of variable references and
function calls. The correctness of verifications performed in the presence of the
new language features has also been discussed. As pointed out, systems that
make use of the dynamic extensions can be verified at the expense of a limited
memory overhead by taking advantage of all standard state compression tech-
niques. The number of cases where partial order reductions can be applied is
smaller with dSPIN than with SPIN, due to the use of pointers and function
calls. The applicability of partial order reductions is driven by a conservative
approximation of the variable alias relationship, which is computed by a poly-
nomial complexity data-flow analysis algorithm.

Experiments carried out in order to make a comparison between dSPIN and
the standard version of SPIN showed that the overhead in memory space and
execution speed can be neglected. Moreover, experience with a non-trivial dy-
namic data structure used in a concurrent environment gives a glimpse of the
tool’s capability of modeling and verifying programs that use dynamic mecha-
nisms.

References

1. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman: Compilers, Principles, Techniques
and Tools. Addison-Wesley (1986)

2. R. Bayer and M. Schkolnick: Concurrency of Operations on B-Trees. Acta Infor-
matica, Vol. 9. Springer-Verlag (1977) 1-21

3. Thierry Cattel: Modeling and Verification of sC++ Applications. Proceedings of
the Tools and Algorithms for the Construction and Analysis of Systems, Lisbon,
Portugal, LNCS 1384. Springer-Verlag (April 1998) 232-248

4. C. Demartini, R. Iosif, and R. Sisto: Modeling and Validation of Java Multithreading
Applications using SPIN, Proceedings of the 4th workshop on automata theoretic
verification with the SPIN model checker, Paris, France (November 1998) 5-19

5. R. losif: The dSPIN User Manual.
http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml

6. Gerard J. Holzmann: State Compression in SPIN: Recursive Indexing and Com-
pression Training Runs. Proceedings of the 3rd workshop on automata theoretic
verification with the SPIN model checker, Twente, Holland (April 1997)

7. Gerard J. Holzmann: An Improvement in Formal Verification. Proceedings FORTE
1994 Conference, Bern, Switzerland (October 1994)

8. Knuth, D.E.: The Art of Computer Programming. Vol. 3. Sorting and Searching.
Addison-Wesley (1972)

9. Bjarne Stroustrup: The C++ Programming Language. Addison-Wesley (1991)

10. Pierre Wolper and Patrice Godefroid: Partial-Order Methods for Temporal Veri-
fication. CONCUR, ’93 Proceedings, Lecture Notes in Computer Science, Vol. 715.
Springer-Verlag (August 1993) 233-246

