
Embedding a Dialect of SDL in PROMELA

Heikki Tuominen

Nokia Telecommunications,
P.O. Box 372, FIN-00045 Nokia Group, Finland

heikki.j.tuominen@nokia.com

Abstract. We describe a translation from a dialect of SDL-88 to PRO-
MELA, the input language of the SPIN model checker. The fairly straight-
forward translation covers data types as well as processes, procedures,
and services. Together with SPIN the translation provides a simulation
and verification environment for most SDL features.

1 Introduction

TNSDL, Nokia Telecommunications SDL, is a dialect of SDL-88 [6] used for
developing switching system software. As one possibility to construct a simula-
tion and verification environment for TNSDL an embedding in—or a translation
to—PROMELA [1] has been investigated. The defined and mostly implemented
translation provides an SDL front-end to the SPIN model checker [3] with prop-
erties similar to those of commercial SDL tools.

Using an existing tool, SPIN in this case, as the basis of an SDL verification
environment might bring some compromises but certainly saves a lot of develop-
ment effort when compared with implementing everything from scratch. Among
the types of languages with advanced tool support, e.g. Petri nets and process
algebras, PROMELA seems to be an ideal choice for SDL because of the close
relationship between the languages. PROMELA being conceptually extremely
close to SDL makes the translation fairly simple and allows preserving the struc-
ture of the system in the translation thus perhaps providing some advantage in
the verification phase.

The close relation between SDL and PROMELA is no accident: the first ver-
sion of PROMELA was designed as an extension to another language in order to
support analysis of SDL descriptions [4]. Most SDL concepts have direct coun-
terparts in PROMELA and the translation is very straightforward. The most
notable examples are the processes, their dynamic creation, and communication
through message passing. Some other features, like passing parameters to SDL
procedures, require a slightly more complicated translation and for very few SDL
aspects there seems to be no feasible representation in current PROMELA. The
TNSDL pointer data type—not present in SDL-88—might serve as an example
of this last category.

TNSDL differs from the SDL-88 recommendation in various details, includ-
ing both simplifications and extensions. With respect to the translation to PRO-
MELA the definition of data types and routing of signals are perhaps the two

most remarkable differences. Instead of the algebraic specifications in SDL-88
TNSDL has a C-like type system and instead of the channels and signal routes
TNSDL includes a routing file which defines the destination processes for signals
sent without an explicit process address. Translating the corresponding aspects
of SDL-88 to PROMELA would probably be more complicated than the pre-
sented translation of TNSDL.

Essentially the same approach to SDL verification has earlier been applied
at AT&T [2, 4]. The translation described in this paper attempts to cover more
SDL features by making use of the recent extensions in the PROMELA language
but unfortunately we cannot currently report on any practical applications of the
method. There also exists an experimental verification system for TNSDL based
on a translation to Petri nets [5] but for the above reasons we feel PROMELA
to be a more natural target language.

The rest of the paper describes the translation from TNSDL to PROMELA
organized as follows. Section 2 describes the translation of data types, the declar-
ative part of SDL. The communication part, i.e. signal queues, and the opera-
tional part, i.e. processes and other similar entities, are covered in Sections 3
and 4, respectively. Finally, the implementation is touched on in Section 5 and
the concluding Section 6 enumerates some limitations found in PROMELA and
SPIN during the study. Overall, no formal definition of the translation is at-
tempted, the description is based solely on examples and prose. Also, various
technical details are ignored in the presentation, e.g. names of data types, pro-
cesses, and procedures are assumed to be unique over the whole system to be
translated.

2 Declarative SDL

The declarative part of SDL covers the definition of data types which are then
used in variable declarations. In contrast to the algebraic specifications in the
SDL-88 recommendation, TNSDL has a more implementation-oriented C-like
type system with arrays, unions, pointers etc. As PROMELA has a similar,
although more restricted, C-based type system the translation of data types is
quite simple.

Like normal programming languages TNSDL provides a set of predefined
data types and ways to construct new types on top of the existing ones. The
PROMELA representation of these two faces of the type system is described in
the two subsequent sections.

2.1 Predefined types

Predefined types are the basic ways to represent data. TNSDL has a set of nor-
mal integer types of various sizes and some types corresponding to fundamental
SDL concepts. The representation of these types in PROMELA is defined in
Table 1, the dashes indicate the currently missing counterparts of the marginal
floating point number types. Constants of the predefined types are declared in

PROMELA using define directives as indicated in Table 2 for the bool and
condition types.

TNSDL PROMELA
bool bool
byte byte
word unsigned : 16
dword unsigned : 32
shortint short
integer short
longint int
real –
doublereal –
character byte
pid chan
duration unsigned : 32
condition bool

Table 1. Translation of predefined types.

TNSDL PROMELA

#define T true
#define F false
#define SUCCESS true
#define FAILURE false

Table 2. Translation of constants in predefined types.

2.2 Type expressions

Type expressions are ways to build new data types based on the existing ones.
TNSDL includes seven kinds of them: type names, arrays, integer subranges,
enumerations, structures, unions, and pointers. In this terminology PROMELA
has only arrays and structures, even them in a restricted form, but they turn
out to be sufficient for representing all TNSDL types except pointers.

PROMELA representations of some TNSDL type definitions are given in
Table 3. Auxiliary types are used to overcome the limitations of PROMELA,
mainly the lack of nested type expressions. Constants of the user-defined types,

enumeration constants among them, are directly replaced by their values in the
translation and no define directives are thus needed for them.

3 Communication

Asynchronous communication through message passing is one of the character-
istic features of SDL. An infinite queue for storing the received messages, or
signals, is implicitly associated with each process. With some minor limitations
the same mechanism is available also in PROMELA and the translation is again
rather obvious.

The signal queues are not visible in SDL code but in PROMELA they have
to be defined like variables: queues, or channels, have finite length and are typed.
A typed channel can only carry signals whose parameters match its definition
and since it is not known at translation time which signals will be sent to which
processes all the channels are made “wide” enough to carry any signal present in
the system. Each channel has thus appropriate fields for storing any signal with
its parameters in a single slot. Actually the type of the channels is defined as a
data type, a structure with proper fields for the parameters of the SDL signals.
In addition, the structure contains fields for the signal name and the identifier
of the sending process.

As an example, Table 4 contains the channel type for an SDL system with
two signals, sig1 s and sig2 s. mtype is an enumeration type defining constants
for all the signals in the system and sig t is the data type used to represent
signals outside the channels. Unfortunately SPIN does not allow a channel with
type sig t to be defined because certain data types are forbidden on channels.
These include at least arrays whose base type is defined with a typedef and
types containing the unsigned construct. For this reason the signals are on
the channels represented using another type, csig t, which contains the same
information as sig t but in a slightly different form. In csig t the critical
arrays are represented as structures and the unsigned integers as signed ones.
Signals are converted between these two representations using the generated
PROMELA inline procedures, Table 5.

The mechanism used for routing signals which are sent without an explicit
target process is simpler in TNSDL than in SDL-88. Instead of signal lists as-
sociated with signal routes and channels TNSDL contains specific syntax for
defining the “default” target for a signal. The target is specified as one of the
master processes of the system, which are created at system start-up and limited
to have only one instance. The signal queue of such a master process is global
in the PROMELA representation and it is directly used as the target in these
cases.

4 Operational SDL

The behavior of an SDL system is produced by its processes, i.e. entities which
receive and send signals as well as perform calculations. This section describes

TNSDL PROMELA

TYPE name_t
REPRESENTATION byte;

ENDTYPE name_t;

TYPE array_t
REPRESENTATION

ARRAY (2) OF struct_t;
ENDTYPE array_t;

TYPE range_t
REPRESENTATION (1:100);

ENDTYPE range_t;

TYPE enum_t
REPRESENTATION ENUM

a,b,c
ENDENUM;

ENDTYPE enum_t;

TYPE struct_t
REPRESENTATION STRUCT

f1 STRUCT
f11 enum_t;

ENDSTRUCT;
f2 byte;

ENDSTRUCT;
ENDTYPE struct_t;

TYPE union_t
REPRESENTATION UNION

f1 array_t;
f2 struct_t;

ENDUNION;
ENDTYPE union_t;

TYPE pointer_t
REPRESENTATION

POINTER(union_t);
ENDTYPE pointer_t;

#define name_t byte

typedef array_t {
struct_t item[2];

}

#define range_t byte

#define enum_t byte

typedef struct_t_aux_1 {
enum_t f11;

}
typedef struct_t {

struct_t_aux_1 f1;
byte f2;

}

typedef union_t {
array_t f1;
struct_t f2;

}

-

Table 3. Translation of type expressions.

TNSDL PROMELA

SIGNAL
sig1_s
(

par1 byte;
);
sig2_s
(

p1 array_t;
p2 word;

);

mtype = {sig1_s,sig2_s}
typedef _sig_t {

mtype f1;
chan f2; /* sender */
byte f3;
array_t f4;
unsigned f5 : 32;

}
typedef _carray_t {

struct_t item_0;
struct_t item_1;

}
typedef _csig_t {

mtype f1;
chan f2;
byte f3;
_carray_t f4;
int f5;

}

Table 4. Translation of signal declarations.

the representation of SDL processes in PROMELA. Also procedures and services,
which can be considered as variations of the same theme, are discussed.

4.1 Processes

An SDL process is an extended finite state automaton which upon reading a
signal from its queue carries out the associated computation and then enters the
next state. The read, or received, signal is indicated in an INPUT statement
which is followed by a sequence of action statements, called a transition. Each
process also contains a START transition which is executed when a process
instance is created. Furthermore, an instance can terminate itself using the STOP
statement.

TNSDL processes are translated to PROMELA processes. The master pro-
cesses correspond to active processes with global queues and the others to
normal PROMELA processes with local queues. The translation is illustrated
with an example containing both a master and a regular process in Table 6. The
example also indicates the general structure of the generated processes, i.e. a
sequence of variable declarations, state descriptions, and transitions. SDL tran-
sitions are sequences of statements which are translated to PROMELA statement
by statement as illustrated in Table 7.

TNSDL PROMELA

_csig_t _cs;
inline _receive_sig(ch,sig) {

ch?_cs;
sig.f1 = _cs.f1;
sig.f2 = _cs.f2;
sig.f3 = _cs.f3;
sig.f4.item[0] = _cs.f4.item_0;
sig.f4.item[1] = _cs.f4.item_1;
sig.f5 = _cs.f5 + 32768;

}
inline _send_sig1_s(t,s,p1) {

_cs.f1 = sig1_s;
_cs.f2 = s;
_cs.f3 = p1;
t!_cs;

}
inline _send_sig2_s(t,s,p1,p2) {

_cs.f1 = sig2_s;
_cs.f2 = s;
_cs.f4.item_0 = p1[0];
_cs.f4.item_1 = p1[1];
_cs.f5 = p2 - 32768;
t!_cs;

}
inline _send_sig(ch,sig) {

_cs.f1 = sig.f1;
_cs.f2 = sig.f2;
_cs.f3 = sig.f3;
_cs.f4.item_0 = sig.f4.item[0];
_cs.f4.item_1 = sig.f4.item[1];
_cs.f5 = sig.f5 - 32768;
ch!_cs;

}

Table 5. Translation of signal declarations, continued.

TNSDL PROMELA

PROCESS tail;
FPAR p1 byte;

START;
STOP;

ENDPROCESS tail;

MASTER PROCESS head;
DCL x byte;

START;
CREATE tail(3);
NEXTSTATE idle;

STATE idle;
INPUT sig1_s(x);

TASK x := x + 1;
NEXTSTATE idle;

ENDSTATE idle;
ENDPROCESS head;

proctype tail (chan PARENT;
chan __offspring;
byte p1) {

chan SELF = [N] of {_csig_t}
__offspring!SELF;
goto _transition0;
_transition0:
goto end;
end:
skip;

}

chan _head = [N] of {_csig_t}
active proctype head () {

chan SELF= _head;
chan SENDER, OFFPSRING;
chan _offspring = [0] of {chan}
byte x;

goto _transition0;

idle:
do
:: _receive_sig(SELF,_sig) ->

if
:: sig1_s == _sig.f1 ->

SENDER = _sig.f2;
x = _sig.f3;
goto _transition1;

:: else ->
skip;

fi;
od;

_transition0:
run tail(SELF,_offspring,3);
_offspring?OFFSPRING;
goto idle;

_transition1:
x = x + 1;
goto idle;

}

Table 6. Translation of processes.

TNSDL PROMELA

OUTPUT sig1_s(100) TO SENDER;

STOP;

TASK a := b + 2;

CREATE client(1,2);

DECISION x;
(<3) TASK y := y + 1;
(4,5) TASK y := y + 2;
ELSE TASK y := y + 3;

ENDDECISION;

WHILE counter > 0;
TASK counter := counter - 1;

ENDWHILE;

NEXTSTATE idle;

JOIN spaghetti;

SET(NOW+b,timer_a);

RESET(timer_a);

_send_sig1(SENDER,SELF,100);

goto end;
...
end:
skip;

a = b + 2;

chan _offspring = [0] of {chan};
run client(SELF,_offspring,1,2);
_offspring?OFFSPRING;

if
:: (x<3) -> y = y + 1;
:: (x==4 || x==5) -> y = y + 2;
:: else -> y = y + 3;
fi

do
:: counter > 0 ->

counter = counter - 1;
:: else -> break;
od

goto idle;

goto spaghetti;

_rnd_rcv_timer_a(_timer,SELF);
_rnd_rcv_timer_a(SELF,_timer);
_send_timer_a(_timer,SELF);

_rnd_rcv_timer_a(_timer,SELF);
_rnd_rcv_timer_a(SELF,_timer);

Table 7. Translation of action statements.

Unexpected signals, i.e. ones without a matching INPUT statement in the
current state, are normally “consumed implicitly” in SDL. This silent deletion
can, however, be prevented using SAVE statements which preserve the indicated
signals for later processing. SAVE statements are translated to PROMELA using
additional local save queues to which the saved signals are sent. Always when the
SDL state of the process changes the signal queue is prefixed with the contents
of the save queue.

4.2 Timers

Timers are ways to incorporate real-time features in SDL descriptions. A process
can set a timer to fire after a wanted period of time and the firing timer then
sends an appropriate signal to the activating process.

As PROMELA has no real time related features the representation of timers
is forced to be an approximation. Timers are in the translation represented by
a process which receives all the requests corresponding to SET statements and
simply sends the proper timer signal immediately back to the activating process.
The translation of SET statements and their opposites, RESET statements, is
sketched in Table 7; the rnd rcv timer a procedure is used to remove the
possible earlier activation signal of the timer both from the signal queue of the
timer process and the activating process.

4.3 Procedures

Procedures provide in SDL, like in normal programming languages, a mecha-
nism for grouping certain behavior together. They are subroutines which can
be called in processes, other procedures, and even in the procedures themselves.
A procedure is defined very much like a process—it can contain states, inputs,
transitions etc.—but is naturally less independent. For example, a procedure
does not have a signal queue of its own, it relies on the queue of the calling
process.

PROMELA inline procedures provide a useful mechanism for representing
SDL procedures but they cannot be used alone because they are based on macro
expansion and cannot represent cyclic recursive procedures. Thus, each SDL pro-
cedure is translated to a PROMELA inline procedure mostly following the rules
defined for processes but in addition a simple PROMELA process is generated
for each procedure invocation, i.e. a CALL statement. The additional process
takes mainly care of calling the inline procedure with proper parameters.

SDL procedures can have two kinds of parameters: value and reference ones,
also called IN and IN/OUT parameters. Value parameters represent the native
mechanism in PROMELA and pose thus no problems in the translation but the
reference ones implement a kind of remote referencing and require somewhat
more effort. Roughly speaking, the values of the reference parameters are passed
to the PROMELA process implementing the SDL procedure in the beginning and
sent back to the calling process at the end of the execution. The same mechanism
is used to make the process-level variables visible within the procedure when

required. As an example, Table 8 includes the translation of a simple TNSDL
procedure.

4.4 Services

SDL services, or subautomata as they are called in TNSDL, are another way to
create structure within a process. A process defined using services is internally
like a set of processes but seen from the outside it behaves like a single process,
i.e. it has only one signal queue and process identifier.

Each SDL service is translated to a PROMELA process and an additional
main process is generated for controlling the aggregate. The main process takes
care of first creating the service processes and then relaying the received sig-
nals to proper services as well as synchronizing the services. Each signal can be
received only by one service and services within a process are not allowed to
execute truly concurrently with each other. In addition to the normal communi-
cation mechanism services can use another one, called priority signals in SDL-88
and internal signals in TNSDL. These signals, always exchanged within an SDL
process, have a higher priority than the normal ones and are in the PROMELA
translation transferred through an additional internal signal queue.

Table 9 provides an example of the generated main process and Table 10
outlines the translation of a single service. In order to make the process-level
variables visible to all the services they are in the beginning of the main process as
well as after the transitions in the services sent to specific channels and received
from them in the beginning of the transitions.

4.5 Modules

TNSDL modules, an extension to SDL-88, bring a possibility to share data
among processes. Modules can contain procedures which can be called in any
process of the system and variables which are visible to all procedures in the
module. In the PROMELA representation the module variables are made global
and the procedures are translated much like normal procedures.

5 Implementation

The described central parts of the translation have been implemented in an
experimental tool called TNPRO. Actually TNPRO is an alternative back-end
in a TNSDL to Petri net translator [5] which moreover uses the front-end of a
TNSDL to C translator for parsing TNSDL. The functionality of TNPRO has
so far been demonstrated only with small—a few hundred lines each—artificial
TNSDL descriptions.

TNSDL PROMELA

PROCESS dummy;
DCL x byte;

PROCEDURE proc;
FPAR IN a byte,

IN/OUT b byte;

START;
TASK b := a;
RETURN;

ENDPROCEDURE proc;

START;
CALL proc(3,x);
STOP;

ENDPROCESS dummy;

inline proc (a,b) {
goto _transition0;

_transition0:
b = a;
goto _return;

}
proctype dummy () {

chan _ret1 = [0] of {bool};
byte x;
chan _x = [1] of {byte}
goto _transition0;

_transition0:
_x!x;
run proc_1(_ret1,SELF,

SENDER,3,_x);
_ret1?true;
_x?x;
goto end;

end:
skip;

}
proctype proc_1(chan _ret2;

chan SELF;
chan SENDER;
byte a;
chan _b) {

byte b;
_b?b;
proc(a,b);
_return:
_b!b;
_ret2!true;

}

Table 8. Translation of procedures.

TNSDL PROMELA

PROCESS auto;
DCL x byte;

SUBAUTOMATON auto1;
...
ENDSUBAUTOMATON auto1;

SUBAUTOMATON auto2;
...
ENDSUBAUTOMATON auto2;

ENDPROCESS auto;

proctype auto () {
byte x;
chan _x = [1] of {byte};
chan _int = [N] of {_csig_t};
chan _sync = [1] of {byte};
chan _auto1 = [0] of {_csig_t};
chan _auto2 = [0] of {_csig_t};
chan _iauto1 =[0] of {_csig_t};
chan _iauto2 =[0] of {_csig_t};

_sync!2;
_x!x;
run auto1(SELF,_auto1,_iauto1,

_int,_sync,_x);
run auto2(SELF,_auto2,_iauto2,

_int,_sync,_x);
do
::_sync?0 ->

if
::_receive_sig(_int,_sig) ->

if
::sig1_s == _sig.f1 ->

_send_sig(_iauto1,_sig);
:: sig2_s == _sig.f1 ->

_send_sig(_iauto2,_sig);
:: else -> _sync!0;
fi;

::empty(_int) &&
nempty(SELF) ->
_receive_sig(SELF,_sig);
if
::sig1_s == _sig.f1 ->

_send_sig(_iauto1,_sig);
:: sig2_s == _sig.f1 ->

_send_sig(_iauto2,_sig);
:: else -> _sync!0;
fi;

fi;
od;

}

Table 9. Translation of services (subautomata).

TNSDL PROMELA

SUBAUTOMATON auto1;
START;
NEXTSTATE idle;

STATE idle;
INPUT INTERNAL sig1_s(x);

STOP;
ENDSTATE idle;

ENDSUBAUTOMATON auto1;

proctype auto1 (chan SELF;
chan _auto;
chan _iauto;
chan _internal;
chan _sync;
chan _x) {

byte _cntr;
_sync?_cntr;
_cntr = _cntr - 1;
byte x;
_x?x;
goto _transition0;

idle:
_x!x;
_sync!_cntr;
_cntr = 0;
do
:: _receive_sig(_auto,_sig) ->

_x?x;
if
:: else -> _sync!_cntr;
fi

:: _receive_sig(_iauto,_sig) ->
_x?x;
if
:: sig1_s == _sig.f1 ->

x = _sig.f3;
goto _transition1;

:: else -> _sync!_cntr;
fi

od

_transition0:
goto idle;
_transition1;
goto end;

end:
skip;

}

Table 10. Translation of a single service (subautomaton).

6 Conclusions

A translation from TNSDL, a dialect of SDL-88, to PROMELA was outlined.
PROMELA turned out to be an ideal target language for such a translation
which in most places is very straightforward. PROMELA has, however, some
restrictions and limitations whose elimination would further simplify the trans-
lation and make it feasible for industrial applications.

First, there are some TNSDL features which seem to have no proper coun-
terpart in PROMELA and cannot be translated.

– PROMELA does not have a data type for real numbers. Fortunately these
are very seldom used in the TNSDL world and when used could probably
be approximated by integers.

– PROMELA has no pointers. Unfortunately they are widely used in switch-
ing software and in order to analyze real applications some representation
for them should be found. Pointers could perhaps to some extent be simu-
lated using channels in PROMELA: the channel variable could stand for the
pointer and the contents of the channel for the pointed item.

Secondly, there are some constructs which are not allowed in PROMELA
although they perhaps could be without any major redesign in SPIN.

– The type system could be more liberal, ideally the typedef construct could
be as flexible as in C.

– The range of data types allowed on channels could be wider.
– The data type chan could be treated more consistently with other types.

E.g. chan typed fields of structures cannot currently be assigned to variables
in the following way.

typedef chan_t {
chan f;

}
chan_t x;
chan y;
y = x.f;

For this reason TNSDL process identifiers are actually represented as bytes
in PROMELA. This works because bytes seem to be the C representation
of chan types in the code generated by SPIN.

– The assignment statement could work directly also for types defined with
the typedef construct. E.g. the following assignment is currently forbidden.

typedef assign_t {
byte f;

}
assign_t x,y;
x = y;

– In the current form of the TNSDL to PROMELA translation remote refer-
encing of variables would be very useful even if it would ruin some of the
partial order reduction capabilities.

References

1. Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall
International, Inc., Englewood Cliffs, New Jersey, 1991.

2. Gerard J. Holzmann. Practical methods for the formal validation of SDL specifica-
tions. Computer Communications, 15(2):129–134, March 1992.

3. Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, May 1997.

4. Gerard J. Holzmann and Joanna Patti. Validating SDL specifications: an experi-
ment. In Ed Brinksma, Giuseppe Scollo, and Chris A. Vissers, editors, Protocol Spec-
ification, Testing and Verification, IX, Proceddings of the IFIP WG 6.1 Ninth Inter-
national Symposium on Protocol Specification, Testing, and Verification, Enchede,
The Netherlands, 6–9 June, 1989, pages 317–326, Amsterdam, 1990. North-Holland.

5. Markus Malmqvist. Methodology of dynamical analysis of SDL programs using
predicate/transition nets. Technical Report B16, Helsinki University of Technology,
Digital Systems Laboratory, April 1997.

6. Roberto Saracco, J.R.W. Smith, and Rick Reed. Telecommunications Systems En-
gineering using SDL. North-Holland, Amsterdam, 1989.

