
Assume-Guarantee Model Checking of Software:
A Comparative Case Study ?

Corina S. Păsăreanu, Matthew B. Dwyer, and Michael Huth

Department of Computing and Information Sciences
Kansas State University, Manhattan, KS 66506, USA

{pcorina,dwyer,huth}@cis.ksu.edu

Abstract. A variety of assume-guarantee model checking approaches
have been proposed in the literature. In this paper, we describe several
possible implementations of those approaches for checking properties of
software components (units) using SPIN and SMV model checkers. Model
checking software units requires, in general, the definition of an environ-
ment which establishes the run-time context in which the unit executes.
We describe how implementations of such environments can be synthe-
sized from specifications of assumed environment behavior written in
LTL. Those environments can then be used to check properties that the
software unit must guarantee which can be written in LTL or ACTL. We
report on several experiments that provide evidence about the relative
performance of the different assume-guarantee approaches.

1 Introduction

Model checking is maturing into an effective technique for validating and veri-
fying properties of complex systems and is beginning to be included as part of
system quality assurance activities. While most of the practical impact of model
checking has been in the domains of hardware and communication protocols,
the techniques and tools that support model checking are beginning to see some
application to software systems.

It is well-known that software defects are less costly the earlier they are re-
moved in the development process. Towards this end, a number of researchers
have worked on applying model checking to artifacts that appear throughout the
software life-cycle, such as requirements [2], architectures [23], designs [16], and
source code [7]. Source code, of course, is not a monolithic entity that is devel-
oped at one time. Source code evolves over time with different components, or
units, reaching maturity at different points. Software units come in many differ-
ent types. In well-designed software, a unit defines a layer of functionality with
a narrow interface and a mechanism for hiding the details of its implementation
from direct external access. Units may be invoked by other units through the
operations of their interface and they may in turn invoke operations of other
? This work was supported in part by NSF and DARPA under grants CCR-9633388,

CCR-9703094, and CCR-9708184 and by NASA under grant NAG-02-1209.

units; Java classes or Ada packages or tasks are examples of units. Testing units
in isolation involves the definition of program components that invoke the oper-
ations of the unit, a driver, and that implement the operations used by the unit,
a stub, in such a way that the behavior of the unit is exercised in some desired
fashion. Stubs and drivers can be defined to also represent parallel contexts. Par-
allel contexts represent those portions of an application that execute in parallel
with and engage in inter-task communication with the procedures and tasks of
the software unit under test. Standard practice in modern software development
is to begin the process of unit testing as soon as each unit is “code-complete”.
While testing will remain an important part of any software development pro-
cess, model checking has the potential to serve as an effective complement to
testing techniques by detecting defects relative to specific correctness properties
and in some cases verifying properties of the software.

In this paper, we describe our adaptation and application of assume-guarantee
style model checking to reasoning about correctness properties of software units,
written in Ada. Units are fundamentally open systems and must be closed with
a definition of the environment that they will execute in. The software compo-
nents used to achieve this environment definition serve the role of stubs and
drivers. The naive environment for properties stated in universal logics is the
universal environment, which is capable of invoking any sequence of operations
in the unit’s interface. In many cases, one has behavioral information about unit
interfaces, rather than just signatures, that can be exploited to refine the defini-
tion of the environment used to complete the unit’s definition. In particular, we
use linear-temporal logic (LTL) [20] as a means of specifying assumptions about
interface behavior. When both the assumption φ and the guarantee property ψ
are specified in LTL one can simply check the formula φ → ψ with a model
checker like SPIN [16]. LTL assumptions can also be used to synthesize refined
environments, in which case φ can be eliminated from the formula to be checked.
An additional benefit of synthesizing such environments is that it enables guar-
antee properties (ψ) specified in the universal fragment of computation tree logic
(CTL) [6] to be checked with a model checker like SMV [22].

The theoretical foundations of this approach are not new. Several researchers
have explored the efficacy and complexity of different styles of assume-guarantee
reasoning with LTL and CTL specifications [27, 19]. The primary contributions
of this paper are pragmatic (i) implementing a tool to synthesize stubs and
drivers that encode given LTL assumptions, (ii) supporting local assumptions
about the behavior of individual components of the environment, and (iii) pro-
viding initial experimental evidence of the performance tradeoffs involved with
different styles of assume-guarantee reasoning for software units using SPIN and
SMV. Secondary contributions of the work presented here include preliminary
examination of several “real” programs, including specifications and a discussion
on how to analyze components of these programs and some preliminary data on
the kinds of properties for which CTL model checking exhibits a performance
advantage over LTL model checking. The paper proceeds by surveying relevant
background material in the next section. Section 3 presents our procedure for

synthesizing Ada implementations of stubs and drivers from LTL assumptions.
The Ada implementations are fed as input to an existing toolset for extracting
finite-state models from source code which is described in Section 4. Section 5
then presents data on the performance of unit-level model checking based on
synthesized environments. Section 6 describes related work and Section 7 con-
cludes.

2 Background

Linear and Branching Temporal Logics. There are two principal types of
temporal logics with discrete time: linear and branching. Linear temporal logic
(LTL) is a language of assertions about computations. Its formulae are built
from atomic propositions by means of Boolean connectives and the temporal
connectives X (“next time”) and U (“until”; pUq means that q holds at some
point in the future, and that until that point, p is true). The formula trueUp,
abbreviated Fp, says that p holds eventually, and ¬F¬p, abbreviated Gp, says
that p is always true. A program satisfies an LTL formula, if all its possible
computations satisfy the formula. In contrast, computation tree logic (CTL) is a
branching time logic about computation trees. Its temporal connectives consist
of path quantifiers immediately followed by a single linear-temporal operator.
The path quantifiers are A (“for all paths”) and E (“for some path”). ACTL is
the universal fragment of CTL. Using De Morgan’s laws and dualities, any ACTL
formula can be re-written to an equivalent CTL formula in which negations are
applied only to atomic propositions, and that contains only A quantifiers; thus,
in ACTL one can state properties of all computations of a program, but one can
not state that certain computations exist.

Modular Verification. In modular verification, under the assume-guarantee
paradigm [26], a specification consists of a pair 〈φ, ψ〉, where φ and ψ are tem-
poral logic formulae; ψ describes the guaranteed behavior of the module and φ
describes the assumed behavior of the environment with which the module is in-
teracting. For the linear temporal paradigm, both φ and ψ are LTL formulae. As
observed in [26], in this case the assume-guarantee pair 〈φ, ψ〉 can be combined
to a single LTL formula φ → ψ. In the linear branching modular model checking
problem, the assumption is an LTL formula, and the guarantee is a branching
temporal logic formula (see e.g.[27]). Another approach is branching modular
model checking, in which both assumption φ and guarantee ψ are branching
temporal logic formulae. This case is considered in [14, 19]. In these papers it
is argued that, in the context of modular verification, it is advantageous to use
only universal temporal logic (like LTL and ACTL). Universal temporal logic
formulae have the helpful property that once they are satisfied in a module, they
are also satisfied in any system that contains the module. We consider in this
paper assumptions expressed in LTL and guarantees that can be expressed in
both LTL and ACTL.

SPIN and SMV. We use two finite-state verification tools: SPIN, a reachability
based model checker that explicitly enumerates the state space of the system be-
ing checked; and SMV, a “symbolic model checker”, which uses Ordered Binary
Decision Diagrams to encode subsets of the state space. These tools represent
two of the major approaches to finite-state verification. SPIN accepts design
specifications written in the Promela language and it accepts correctness prop-
erties written in LTL. SPIN can be used for assume-guarantee style verification
by checking LTL specifications of the form φ → ψ against “closed” modules.
SMV checks properties written in CTL, with fairness constraints of the form
GFf , for some CTL formula f . Modular verification can be performed in a very
limited way, if φ can be expressed via such fairness constraints. A new version of
SMV supports LTL model checking, in addition to CTL, and it is also especially
designed for assume-guarantee style reasoning, where both the assumption and
the guarantee are LTL formulae.

3 Synthesis of Environments from LTL Assumptions

Tableau Procedure. We close a software unit by generating source code that
implements models of environments. To begin construction of any such model
one must have a definition of the possible actions of the environment. For Ada
programs, these actions include: interface actions (i.e. entry calls or accepts, calls
to interface procedures of the software unit) or some other internal actions of the
environment. Based on this definition, we construct universal stubs and drivers
that represent all possible sequences of actions. When LTL local assumptions are
available, we can synthesize refined models of environments, using tableau-like
methods [21, 13]. A local assumption describes the temporal relations assumed
to exist among the executions of the interface operations of the unit, invoked by
one particular environment.

We assume that the parameters in unit calls have been abstracted to finite
domains; Section 4 discusses how this is achieved. We then use the algorithm
from [13] (the same algorithm is used in SPIN for generating never claims)
together with the subset construction, justified in [24], to construct from an
LTL formula φ a deterministic automaton that can be represented as a graph
(and translated to Ada). The graph is a maximal model [14] of the environment
assumption in that every computation which satisfies the assumption is a path
in the graph, and that every finite path in the graph is the prefix of some
computation that satisfies the assumption ([13]). If φ is a safety assumption,
then all the paths in the graph satisfy φ. But if φ is a liveness specification,
then there exists some path in the graph that does not satisfy φ. In the case
studies presented in this paper, we used only safety assumptions, and hence the
verification using synthesized environments can not yield false negatives (i.e.
negative results produced as a consequence of considering paths that do not
conform with the environment assumptions). Synthesized environments can be
used in model checking of (stutter-closed [1]) guarantees ψ written in LTL or
ACTL. Note that the LTL assumptions are not necessarily stutter-closed.

 state, choice: Integer;
 begin -- stub for Process
 state:=0;
 loop

 when 0 =>
 case choice is

 case state is

procedure stub(obj:in Object_Type;cont:in out boolean) is

 when 1 => null; state:=0;
 when others => exit;

 end case;
 end case;
 end loop;

 end stub;

 type Stack_Type is
record

Top: integer :=0;
Actual: array (1..Max_Size);

end record;

private

generic
 type Object_Type is private;

package Stack_Pt_Pt is

procedure Pop(stack: in out Stack_Type;object:out Object_Type);
procedure Push(object: in Object_Type;stack:in out Stack_Type);
procedure Empty(stack: Stack_Type;result: out boolean);
procedure Top_Down(stack:Stack_Type; Process_Type);

 type Process_Type is access
procedure (object:in Object_Type;continue:in out boolean);

 type Stack_Type is limited private;

end Stack_Pt_Pt;
 end case; end case;

 state:=0;
 loop

 when 0 =>
 case choice is

 case state is

 when 1 => Push(d1,stack); state:=0;
 when 2 => Push(d2,stack); state:=0;
 when 3 => Push(o,stack); state:=0;
 when 4 => Pop(stack,obj_out); state:=0;
 when 5 => Empty(stack,result); state:=0;

 end driver;
 end loop;

 when others => exit;
 when 7 => null; state:=0;

stub

 begin

 when 6 => Top_Down(stack,); state:=0;

 state, choice: Integer;
task body driver is

-- no local assumption

0

9

 *

7

 *

8

 * *

19

 *Push(d1,stack)

Push(d2,stack)

Push(d1,stack)

Push(d2,stack)

Push(d1,stack)

Push(d2,stack)

Process:

(b) "Universal" driver(a) Stack Interface

(d) Graph generated from assumption(c) Stub for call-back procedure

Fig. 1. Stack implementation

Our methodology for building maximal models of environments from local
assumptions can be extended to handle global assumptions (i.e. assumptions
that relate the behaviors of several local environments), as illustrated in the
Replicated Workers Framework case study from Section 5.

An Example. To illustrate the techniques presented in this paper, we introduce
a familiar software unit as an example. We consider the bounded stack imple-
mentation studied in [10] whose simplified interface is given in Figure 1(a). The
implementation supports iteration in the stack-order (Top Down), by invoking
a user defined call-back routine (Process) for each datum stored in the stack.
The universal driver is depicted in Figure 1(b); while the possible actions of the
driver include all the interface operations of the stack package, we restrict the
stub (presented in Figure 1(c)) to make no calls to the stack package. One prop-
erty that is checked for this unit is that “If a pair of data are pushed then they
must be popped in reverse order, provided that they are popped”(1s) (through-
out the paper, we encode in the property names the systems they are referring
to, e.g. (1s) means property 1 of the stack). Checking this order-related prop-
erty requires the notion of data-independence [28]. We abstracted variables of
Object Type using a 2-ordered data abstraction [9]. This abstraction maps two
distinct values in the concrete domain to the tokens d1 and d2 and all other
concrete values to o. As stated in [28], in order to generalize the results of such a
restricted model check to all pairs of values of Object type one must assure that
the tokens are input to the system at most once, which is specified as the LTL

Source
Ada AI-based

Partial Evaluator
INCA

Proposition
definitions

True or
Counter-example

AI-variable
bindings Specifications

LTL(CTL) PropertyLTL Assumption
Specifications

Ada Ada
Promela
(trans)

Library
Abstraction

SPIN
(SMV)

Actions
Environment

Completer
System

Fig. 2. Source Model Extraction Tools

assumption (about the driver):
(G(Push(d1,stack)→ XG¬Push(d1,stack)))∧G(Push(d2,stack) →XG¬Push(d2,stack)).
In Figure 1(d) we show the graph generated from the above assumption, where
by ∗, we denote any other possible action of the driver: Push(o,stack), Pop(stack,
obj out), Empty(stack,result), Top Down(stack,stub) and null. In the Ada code,
the internal non-observable actions of the environment are modeled by the null
statement, internal choice in the environment is modeled by using the choice
variable which will be abstracted to the point abstraction [9], and finally the
abstracted parameter values are enumerated in specialized Push calls.

4 A Model Extraction Toolset

Toolset Components. For model checking properties of the Ada programs
described in Section 5, we apply the methodology described in [9, 11] which
is supported by the tool set illustrated in Figure 2. The first tool component
constructs source code for drivers and stubs that complete the software unit, as
discussed in Section 3. Incompletely defined Ada source code is fed to the System
Completer, together with a description of the possible actions of the local envi-
ronments and the LTL local assumptions written in terms of the environment
actions; the names of the actions are uninterpreted strings and subsequent com-
pile checks are performed for correctness. The completed program is abstracted
and simplified using abstract interpretation [8] and partial evaluation [18] tech-
niques. The resulting finite-state Ada program can be compiled by the INCA
tool set [7] into the input languages of several verification tools. An important
feature of INCA is its support for defining propositions for the observable states
and actions of the system that the user is interested in reasoning about. These
propositions have provided an advantage for interpreting counter examples, since
the counter example will be rendered in terms of those states and actions.

The Stack Example. For the stack package presented in Section 3, we wrote
the LTL and ACTL specifications derived from the English language description
of the software package. After we closed the stack unit with a stub and a driver,
we defined predicates callPush d1 and callPush d2 that are true immediately
after the driver calls interface operation Push with the first parameter set to d1
and d2 respectively. Analogously, predicates returnPop d1 and returnPop d2 are
true immediately after operation Pop called by the driver returns with obj out set
to d1 and d2 respectively. Using these predicates, property (1s) can be specified

in the following way:
(1s) If d1 and d2 are pushed in this order, then d1 will not be popped until
d2 is popped or d1 will never be popped.
LTL: G((callPush d1 ∧ (¬returnPop d1 U callPush d2)) →

(¬returnPop d1 U (returnPop d2 ∨ G ¬returnPop d1)))
ACTL: ¬EF(callPush d1 ∧ (E(¬returnPop d1 U (callPush d2 ∧

E(¬returnPop d2 U (returnPop d1 ∧ ¬returnPop d2))))))
Special control points can be added to the finite-state model of the Ada

program; for example, we added such a control point immediately after proce-
dure Pop returns d1 and we defined the predicate after returnPop d1, which is
true just after predicate returnPop d1 becomes false. We used this predicate for
specifing a new stack property:
(2s) Once d1 is popped, it can not be popped again.
LTL: G(after returnPop d1 → G ¬returnPop d1)
ACTL: AG (after returnPop d1 → AG ¬returnPop d1)

We can also use predicates that define the points at which selected program
variables hold a given value. In the stack package, for example, we can define
the predicate TopEQzero which holds in the states where variable Top is zero.

5 Experiments with Synthesized Environments

To assess the potential benefits of using synthesized environments in assume-
guarantee model checking of software units, we analyzed several components
of software systems. All of the properties we checked (a selection of which is
given in Figure 3) are instances of property specification patterns [12]. In this
section, we begin with brief descriptions of the software systems we analyzed.
In Figure 4 depicting system architectures, lines with arrows represent either
procedure invocations or calls to task entries; little shaded rectangles represent
interface operations for software units. We then compare the times for SPIN
and SMV model checking with universal and synthesized environments. Space
limits prohibit the inclusion of all of the details of these studies, but, we have
collected the original Ada source code, synthesized environment components, ab-
stracted finite-state Ada code, proposition definitions, assumptions, properties,
and Promela and SMV input descriptions on a web-site [25].

The Gas Station (g). The problem was analyzed in [4] using SPIN and SMV; it
is a scalable concurrent simulation of an automated gas station. Its architecture
is depicted in Figure 4(a). We analyzed the server subsystem, which consists
of operator and pump processes that maintain a bounded length queue holding
customers’ requests. The environment consists of the customer tasks. We checked
property (1g), for three versions of the gas station: with two (version g2), three
(version g3) and four (version g4) customers, respectively. Model checking the
property on the server subsystem “closed” with the universal environment yields
a counter example in which customer 1 makes a prepayment while using the
pump, and thus it keeps using the pump indefinitely. We then assumed that a

(1g) If customer 2 prepays while customer 1 is using the pump then the
operator will activate the pump for customer 2 next.
LTL: G((Start1 ∧ (¬Stop1 U Prepay2)) →

(¬Activate1 U (Activate2 ∨ G ¬Activate1)))
ACTL: ¬EF(Start1 ∧ E(¬Stop1 U (Prepay2 ∧

E(¬Activate2 U (Activate1 ∧ ¬Activate2)))))
(4r) The computation does not terminate unless the pool is empty
(variable workCount is zero), or a worker signals work is done.
LTL: G(callExecute → (¬returnExecute U

(done ∨ workCountEQzero ∨ G ¬returnExecute)))
ACTL: AG(callExecute → ¬E(¬(done ∨ workCountEQzero) U

(returnExecute ∧ ¬(done ∨ workCountEQzero))))
(5r) If a worker is ready to Get work, the workpool is not empty and the
computation is not done, then eventually work is scheduled.
LTL: G((workCountGRzero ∧ acceptPoolGet ∧ ¬done)→

F(calldoWork1 ∨ calldoWork2 ∨ calldoWork3))
ACTL: AG((workCountGRzero ∧ acceptPoolGet ∧ ¬done)→

AF(calldoWork1 ∨ calldoWork2 ∨ calldoWork3))
(6r) The work pool schedules work in input order.
LTL: G((returnInput d1 ∧ F returnInput d2)→

(¬callGet d2 U (callGet d1 ∨ G ¬callGet d2)))
ACTL: ¬EF(returnInput d1 ∧ E(¬callGet d1 U

(returnInput d2 ∧ E(¬callGet d1 U (callGet d2 ∧ ¬callGet d1)))))
(7r) If stub doWork is invoked by worker task i on item d1 then no other
worker task j will invoke doWork on the same item d1.
LTL: G(calldoWorki d1 → G ¬calldoWorkj d1))
ACTL: AG(calldoWorki d1 → AG ¬calldoWorkj d1)
(8r) If worker task i invokes doWork on d1, that same worker task will not
invoke doWork on d1 again.
LTL: G(returndoWorki d1 → G ¬calldoWorki d1)
ACTL: AG(returndoWorki d1 → AG ¬calldoWorki d1)
(7c) If artist a1 registers for event e1 before artist a2 does, then (until
unregistration or termination) once dispatcher receives event e1 from
ADT it will not notify a2 before notifying a1.
LTL: G((register a1e1 ∧ (¬(unregister a1e1 ∨ unregister a2e1) U

register a2e1) ∧ F(term ∨ unregister a1e1 ∨ unregister a2e1))→
((notify artists e1 → (¬notify client a2e1 U(notify client a1e1 ∨
G¬notify client a2e1)))U(term ∨ unregister a1e1 ∨ unregister a2e1)))

ACTL: ¬EF(register a1e1 ∧ E((¬unregister a1e1 ∧ ¬notify client a1e1) U
(register a2e1 ∧ E((¬unregister a1e1 ∧ ¬unregister a2e1 ∧

¬notify client a1e1) U notify client a2e1))))
(8c) No artist attempts to register for event e1 when the size of the array
that stores artists registered for event e1 is equal to the number of artists.
LTL: G(e1szEQ2 ∧ (after register a1e1 ∨ after register a2e1) →

(¬(register a2e1 ∨ register a1e1) U
(e1szLT2 ∨ G ¬(register a2e1 ∨ register a1e1))))

ACTL: AG(e1szEQ2 ∧ (after register a1e1 ∨ after register a2e1) →
¬E(¬e1szLT2 U ((register a1e1 ∨ register a2e1) ∧ ¬e1szLT2)))

Fig. 3. Specifications

Change
Customer(s)

Server

Operator
customer queue

Charge
Prepay

Activate

StopStart

Pump

(a) Gas station

Artist Manager

Client Initializer

Wrapper

ADT Application

(c) Chiron client

Dispatcher

notify_artists

e2_list:

Mapper

register_event
unregister_event

e1_list:

Client

Manager
Protocol

Artist(s)

notify_client_event

(to server)

Driver
(main task)

Stub
(doWork)

Workers(s)

Replicated Workers

Pool

Framework

Create

Put/Get

Execute

Input

Data Generator

Get_data

User’s Application

(b) Replicated Workers

Fig. 4. Software architectures

customer does not prepay for subsequent pumping during current pumping. The
LTL assumption for customer 1 is:
G(Pump.Start →(¬Operator.Prepay(1) U (Pump.Stop ∨ G ¬Operator.Prepay(1)))).

Model checking property (1g) with the behavior of customer 1 restricted by
the environment assumption yields true results.

The Replicated Workers Framework (r). This is a parameterizable job
scheduler implemented as an Ada generic package which manages the startup,
shutdown, and interaction of processes internally. The environment consists of
a single driver (the main task) and two kinds of stub routines (doWork and
doResult). Figure 4(b) illustrates a slightly simplified structure of the replicated
workers framework and its interaction with the environment (the user’s appli-
cation). A variety of properties of this system (with three worker tasks) were
model checked in [9], using SPIN. We reproduce here only the properties that
needed some environment assumptions.

The environment assumptions used for checking both properties (4r) and
(5r) restrict the stubs for the user-defined procedures to make no calls to the
replicated workers framework: G ¬(Create ∨ Input ∨ Execute).

For properties (6r), (7r) and (8r) we used the 2-ordered data abstraction
described in Section 3. As discussed in Section 3, properties like (6r), (7r) and
(8r) are true only under the environment assumption that d1 and d2 are in-
put to the system only once. We observe that the latter assumption is global,
rather than local, because work items can be input to the system from different
tasks/environments (passed in from the main task and returned from calls to
the doWork stubs). To enforce the necessary global assumption we created a
new task, Data Generator, that generates data items d1, d2 and o. The driver
and the stubs (implemented as universal environments) communicate with the
Data Generator to Get data to be input in the work pool. The LTL assumption
used in the synthesis of Data Generator is:
(G(Get data(d1) → XG¬Get data(d1))) ∧ G(Get data(d2) → XG¬Get data(d2)).

The Chiron Client (c). Chiron [29] is a user interface development system.
The application for which an interface is to be constructed must be organized as
abstract data types (ADTs). Chiron has a client-server architecture; Figure 4(c)

gives a simplified view of the architecture of a client. The Artists maintain the
graphical depictions of the ADTs. They indicate the events they are interested in
by registering and de-registering with the Dispatcher, which notifies the artists
of the events from the ADTs. We analyzed the dispatcher subsystem, which con-
sists of the dispatcher, the wrapper and the application; while the environment
consists of the artists and the other remaining components. We checked several
properties for two versions of the dispatcher subsystem: with two artists regis-
tering for two events (version c2) and with two artists registering for three events
(version c3), respectively. Only two properties required the use of environment
assumptions: (7c) and (8c). Property (8c) can be written as a conjunction of two
properties of the following form, that refer to only one artist ai:
(8ic) No artist ai attempts to register for event e1 when the size of the array
that stores artists registered for event e1 is equal to the number of artists.
LTL:G(e1szEQ2 ∧ after register aie1 →(¬register aie1 U(e1szLT2 ∨G¬register aie1)))
ACTL:AG(e1szEQ2 ∧after register aie1→¬E(¬e1szLT2 U(register aie1 ∧¬e1szLT2)))

When model checking the properties on the dispatcher subsystem closed with
universal environments, we obtained false results and counter examples in which
one of the artists keeps registering for event e1 while registered for event e1. We
used the assumption that an artist never registers for an event if it is already
registered for that event, which is actually a specification of the Chiron system.
The LTL assumption for artist a1 is:
G(dispatcher.register(a1,e1) → X((¬dispatcher.register(a1,e1)) U

(dispatcher.unregister(a1,e1) ∨ G¬dispatcher.register(a1,e1)))).
We obtained true results when model checking with both artists a1 and a2

restricted by the environment assumptions.

Generic Containers Implementations. In [10] a large collection of properties
were checked of implementations of bounded stack (s), queue (q) and priority
queue (p). These are sequential software units that were completed with a single
driver environment component and with stubs for user-defined procedures. We
already described the stack implementation in Section 3. Similar properties were
checked for queue and priority queue.

Results. In each of these studies, several of the properties required environment
assumptions for successful model checking. These model checks were performed
with synthesized environments and, alternatively, with assumptions in the for-
mulae (for LTL); we used SPIN, version 3.09 and SMV (Cadence version), on a
SUN ULTRA5 with a 270Mhz UltraSparc IIi and 128Meg of RAM.

Figure 5 gives the data for each of the model checking runs using SPIN. The
names in the first column encode the systems and property that are checked; a
subscript denotes the version of the system being analyzed. For model checking
specifications of the form φ → ψ using universal environments, we report the
total of user and system time in seconds to convert LTL to the SPIN input
format, i.e. never claim, (tnever) and to execute the model checker (tMC). We
also report the memory used in verification in Mbytes (mem) and the total
time to construct Promela code from the initial Ada program (tbuild). For the

Prop. tnever tMC mem tbuild t′
never t′

MC mem′ t′
build

1g2 655.5 3.8 2.005 1.6 0.1 0.5 1.698 1.6
1g3 655.5 149.4 11.938 1.7 0.1 18.4 4.565 1.8
1g4 655.5 5604.7 268.348 2.6 0.1 606.5 101.436 2.7
4r 0.3 7.4 5.385 11.9 0.1 3.1 2.620 7.6
5r 0.1 21.1 2.313 11.9 0.1 12.4 2.005 7.6
6r 539.5 486.4 77.372 36.8 0.1 330.1 66.415 47.2
7r 0.1 567.2 78.089 36.8 0.1 242.7 51.669 47.2
8r 0.1 548.4 73.481 36.8 0.1 227.1 48.495 47.2
7c2 - 25.1 30.4 4.975 6.5
81c2 63.0 223.1 9.788 6.1 0.1 21.6 3.746 6.5
82c2 62.6 236.9 10.095 6.1 0.1 22.1 3.746 6.5
7c3 - 25.1 132.8 16.137 11.8
81c3 63.0 700.3 29.551 7.4 0.1 114.6 10.812 11.8
82c3 62.6 1348.1 33.033 7.4 0.1 119.9 10.812 11.8
1s 367.5 0.2 2.108 27.1 0.2 0.1 2.005 15.5
2s 0.1 0.2 2.005 27.1 0.1 0.1 2.005 15.5
1p 338.2 0.2 2.517 35.3 0.1 0.1 2.108 25.6
2p 365.6 0.3 2.517 35.3 0.1 0.1 2.108 25.6
3p 0.1 0.3 2.313 35.3 0.1 0.1 2.108 25.6
1q 513.9 0.1 2.005 27.8 0.1 0.1 1.801 22.4
2q 0.1 0.1 1.903 27.8 0.1 0.1 1.801 22.4

Fig. 5. SPIN results

verification using synthesized environments we report measurements of the same
times and sizes; a ′ denotes the synthesized measure. SPIN ran out of memory,
when we tried to generate never claims for properties (7c) and (8c), with the
assumptions encoded in the formulae of the form φa1 ∧ φa2 → property, where
φa1 and φa2 are the local assumptions about artists a1 and a2. However, we were
able to generate never claims for properties (81c) and (82c).

Figure 6 gives the data for each of the model checking runs using SMV. For
verifying specifications using universal environments when both φ and ψ are LTL
formulae, we report the total of user and system time in seconds to model check
specifications (tMC LTL), the memory used in Mbyte (memLTL) and the total
time to construct SMV input files from the Ada program (tbuild). For model
checks using synthesized environments, we report the measurements of the same
times and sizes (denoted by ′). In addition, synthesized environments can be
used in CTL model checking, for which we give the total model checking time
(t′MC CTL) and the memory used (mem′

CTL).

Discussion. Our data indicate that synthesized environments enable faster
model-checking. Figure 7 plots the ratio of model check time (memory) for
a property ψ relative to checks of φ → ψ with SPIN using the universal environ-
ment (i.e t′MC/tMC and mem′/mem). In all cases, the synthesized environments
enabled reductions in model check times and memory. The performance advan-
tage arises from the fact that while the universal environment is smaller than
the synthesized environment in most cases, the assumption must be encoded in
the formulae to be checked and this contributes, in general, as many states to
the never claim as to the synthesized environment. This leads to larger state
spaces to be searched. We note that in two cases it was impossible to generate
never claims from LTL formulae (of the form φ → ψ), while the synthesized
environments made model checking possible.

Prop. tMC LT L memLT L tbuild t′
MC LT L mem′

LT L t′
MC CT L mem′

CT L t′
build

1g2 5.56 4.898 3.9 2.34 4.505 0.78 4.071 5.1
1g3 23.05 6.913 8.9 8.03 6.274 2.77 5.488 11.5
1g4 127.49 18.136 31.8 52.00 13.844 16.13 11.517 39.6
4r 67.23 23.478 158.14 16.3 9.379 11.03 8.339 55.69
5r 95.31 32.112 158.14 26.10 12.574 25.98 12.631 55.69
6r 611.09 28.442 130.4 430.73 30.113 63.27 20.922 114.12
7r 74.44 20.160 130.4 60.18 20.922 62.66 20.922 114.12
8r 74.16 20.160 130.4 60.53 20.922 62.39 20.922 114.12
7c2 266.91 18.751 9.3 90.66 28.122 56.06 24.674 15.41
8c2 51.6 13.475 9.3 59.81 24.870 55.69 24.543 15.41
7c3 593.74 43.704 19.1 382.71 73.449 283.6 67.346 44.8
8c3 191.18 32.235 19.1 161.14 47.054 157.28 45.907 44.8
1s 3.42 5.627 40.5 2.14 4.939 0.88 3.399 25.5
2s 2.21 5.332 40.5 0.8 3.399 0.85 3.399 25.5
1p 11.49 8.724 1:01.8 4.1 6.274 4.18 6.045 41.2
2p 11.16 8.716 1:01.8 4.80 6.266 4.13 6.045 41.2
3p 9.72 8.421 1:01.8 4.05 6.045 4.10 6.045 41.2
1q 3.09 5.398 40.2 2.10 4.874 1.60 4.792 41.2
2q 2.23 5.250 40.2 1.63 4.792 1.64 4.792 41.2

Fig. 6. SMV results

CTL model checking these systems with SMV was not feasible, previously,
due to the difficulty of expressing assumptions in CTL. With synthesized en-
vironments, however, we can compare performances of LTL versus CTL model
checking using SMV. Figure 8 plots the ratio of model check time (memory)
for SMV using synthesized environments relative to universal environments.
For each problem, the first bar gives the ratio for LTL model checking using
SMV with the synthesized environment versus the universal SMV baseline (i.e.
t′MC LTL/tMC LTL and mem′

LTL/memLTL) and the second bar gives the ratio
for CTL model checking using SMV with the synthesized environment versus
the universal SMV baseline (i.e. t′MC CTL/tMC LTL and mem′

CTL/memLTL).
As in the case of SPIN, synthesized environments seem to enable faster model
checking with SMV. In terms of memory requirements, it is not clear that syn-
thesized environments are better. Further empirical study is needed to determine
the kinds of assumptions to which the use of synthesized environments is suited
to. The present data suggest to synthesize environments from assumptions that
reduce the state space of the model (e.g. the assumption about the environment
of the stack unit: “d1 and d2 are input to the stack only once”).

The universal environment approach has the advantage of generality. In par-
ticular, the model generated with the universal environment can be reused with
different assumptions, whereas synthesized environments encode a single set of
assumptions. Thus for the universal case, model construction time could be
amortized across a number of model checks. The data indicates, however, that
model construction time is not the dominant factor in the overall analysis time
and that the time to regenerate synthesized environments appears to be more
than recovered by reduced model check times. This observation, however, is based
on studying systems with relatively few external calls and a small interface ac-
tion set. Also, we used relatively simple assumptions for which the synthesized
environments were small (maximum 5 nodes in the generated graphs).

It is well-known that the complexity of model checking varies with the logic
used, for example CTL model checking is linear in the size of the formula and

0

0.2

0.4

0.6

0.8

1

1.2
Time results for SPIN

1g 1g 1g 4r 5r 6r 7r 8r 81c 81c 1s 2s 1p 2p 3p 1q 2q2 3 4 2 3

Synthesized Ratio

0

0.2

0.4

0.6

0.8

1

1.2
Memory results for SPIN

1g 1g 1g 4r 5r 6r 7r 8r 81c 81c 1s 2s 1p 2p 3p 1q 2q2 3 4 2 3

Synthesized Ratio

Fig. 7. Performance comparisons for SPIN model checking

LTL model checking is exponential. For practitioners, the relevant question is
whether this distinction occurs in practice and if so how much more costly LTL
model checking is. Since SMV supports both LTL and CTL model checking the
data in Figure 6 (in columns t′MC LTL and t′MC CTL) can shed some light on the
kinds of properties for which LTL model checking is more expensive than CTL
model checking. One of the main problems in such a comparison is ensuring that
the property specifications in the two logics are the same; we minimized this bias
by using the predefined specification templates provided with the specification
patterns system [12]. Ignoring scaling of systems and variations of encoded as-
sumptions, there were a total of 15 properties checked. Of these, eight were faster
to check in the CTL case, five were faster in the LTL case, and the other two took
essentially the same time. In only four cases (1g,6r,7c,1s), was there a signifi-
cant difference in model check time; each of these cases favored CTL. These four
specifications are instances of the global response-chain pattern [12]. While it is
tempting to conclude that CTL is advantageous for this class of specifications
we observe that the LTL specifications for response-chains are not claimed to be
“optimal” in any sense. A much broader study of the relationship between model
check time, property being checked, and formulation of the property in temporal
logics is needed to characterize the practical differences between LTL and CTL
model checking. Our current results suggest that in most cases the difference is
negligible but that certain forms of specifications may lend themselves to more
efficient CTL model checking.

While not explicit in the data reported in this paper, it is interesting to note
that in many cases, properties of the systems we studied could be model checked
without any assumptions and, when necessary, relatively few assumptions were
sufficient to achieve the level of precision necessary for property verification (out
of 39 properties, only 18 properties needed assumptions).

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Time results for SMV

1g 1g 1g 4r 5r 6r 7r 8r 7c 8c 7c 8c 1s 2s 1p 2p 3p 1q 2q2 3 4 2 2 3 3

Synthesized LTL Ratio
Synthesized CTL Ratio

0

0.5

1

1.5

2
Memory results for SMV

1g 1g 1g 4r 5r 6r 7r 8r 7c 8c 7c 8c 1s 2s 1p 2p 3p 1q 2q2 3 4 2 2 3 3

Synthesized LTL Ratio
Synthesized CTL Ratio

Fig. 8. Performance comparisons for SMV model checking

6 Related Work

The work described in this paper touches on model checking software systems
and model checking open systems.

Much of the related work was described in Section 2. There has been some re-
cent work on developing translation tools to convert software written in high-level
programming languages to the input languages of model checkers. In addition to
the INCA tools, which support Ada, there are two toolsets for translating Java
programs to Promela, the input language of SPIN. JCAT [17] handles a signifi-
cantly restricted subset of the Java language and Java Path Finder [15] handles
a much larger portion of the language, including exceptions and inheritance.
Neither of these tools provides any support for abstracting the control and data
states of the program. We are working to port the environment synthesis tool
described in this paper to generate environments in Java.

Our use of assumptions to synthesize a model of the environment is similar
to work on compositional analysis. These divide-and-conquer approaches decom-
pose a system into sub-systems, derive interfaces that summarize the behavior of
each subsystem (e.g. [5]), then perform analyses using interfaces in place of the
details of the sub-systems. This notion of capturing environment behavior with
interfaces also appears in recent developments on theoretical issues related to
modular verification (e.g. [20, 19]). There has been considerably less work on the
practical issues involved with finite-state verification of partial software systems.
Aside from our work reported in [9, 10], there is another recent related practical
effort. Avrunin, Dillon and Corbett [3] have developed a technique that allows
partial systems to be described in a mixture of source code and specifications. In
their work, specifications can be thought of as assumptions on a naive completion

of a partial system given in code. Unlike our work, their approach is targeted to
automated analysis of timing properties of systems.

7 Conclusion

We have presented an approach to model checking properties of software units
in isolation. This approach is based on the synthesis of environments that en-
code LTL assumptions. The approach also enables LTL-ACTL assume-guarantee
model checking. The reader should take care in making any direct comparison
of the effectiveness of SMV and SPIN for support of assume-guarantee model
checking. Such comparison would require a much broader study that carefully
assesses the biases introduced by translating Ada to the model checker inputs
as was done in [7]. The evidence seems to be conclusive on the question of
whether assumptions should be encoded in the state space, i.e., environment,
or the formula to be checked. For both LTL-LTL and LTL-ACTL approaches
assume-guarantee model checking is more efficient with respect to time for safety
assumptions encoded in the state space. This result holds regardless of whether
the model checks are performed with SMV or SPIN.

References

1. M. Abadi and L. Lamport. Composing specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73-132, January 1993.

2. J. Atlee and J. Gannon. State-based model checking of event-driven system re-
quirements. IEEE Transactions on Software Engineering, 19(1):24-40, June 1993.

3. G.S. Avrunin, J.C. Corbett, and L.K. Dillon. Analyzing partially-implemented
real-time systems. In Proceedings of the 19th International Conference on Software
Engineering, May 1997.

4. A.T. Chamillard. An Empirical Comparison of Static Concurrency Analysis Tech-
niques. PhD thesis, University of Massachusetts at Amherst, May 1996.

5. S.C. Cheung and J. Kramer. Checking subsystem safety properties in composi-
tional reachability analysis. In Proceedings of the 18th International Conference
on Software Engineering, Berlin, March 1996.

6. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, April 1986.

7. J.C. Corbett. Evaluating deadlock detection methods for concurrent software.
IEEE Transactions on Software Engineering, 22(3), March 1996.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 238-252, 1977.

9. M.B. Dwyer and C.S. Păsăreanu. Filter-based model checking of partial systems.
In Proceedings of the Sixth ACM SIGSOFT Symposium on Foundations of Software
Engineering, November 1998.

10. M.B. Dwyer and C.S. Păsăreanu. Model checking generic container implementa-
tions. In Generic Programing: Proceedings of a Dagstuhl Seminar, Lecture Notes
in Computer Science, Dagstuhl Castle, Germany, 1998. to appear.

11. M.B. Dwyer, C.S. Păsăreanu, and J.C. Corbett. Translating ada programs for
model checking : A tutorial. Technical Report 98-12, Kansas State University,
Department of Computing and Information Sciences, 1998.

12. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 21st International Conference on
Software Engineering, May 1999.

13. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-the-fly Automatic
Verification of Linear Temporal Logic. In Proceedings of PSTV’95, 1995.

14. O. Grumberg and D.E. Long. Model Checking and Modular Verification. ACM
Transactions on Programming Languages and Systems, 16(3):843-871, May 1994.

15. K. Havelund and T. Pressburger. Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer, 1999.
to appear.

16. G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279-294, May 1997.

17. R. Iosef. A concurrency analysis tool for java programs. Master’s thesis, Polytech-
nic University of Turin, August 1997.

18. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall International, 1993.

19. O. Kupferman and M.Y. Vardi. On the complexity of branching modular model
checking (extended abstract). In Insup Lee and Scott A. Smolka, editors, CON-
CUR ’95: Concurrency Theory, 6th International Conference, volume 962 of Lec-
ture Notes in Computer Science, pages 408-422, Philadelphia, Pennsylvania, 21-
24 August 1995. Springer-Verlag.

20. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1991.

21. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal
logic. ACM Transactions on Programming Languages and Systems (TOPLAS),
6(1):68-93, 1984.

22. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
23. G.N. Naumovich, G.S. Avrunin, L.A. Clarke, and L.J. Osterweil. Applying static

analysis to software architectures. In LNCS 1301. The 6th European Software
Engineering Conference held jointly with the 5th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, September 1997.

24. C.S. Păsăreanu, M.B. Dwyer, and M. Huth. Modular Verification of Software Units.
Technical Report 98-15, Kansas State University, Department of Computing and
Information Sciences, 1998.

25. C.S. Păsăreanu and M.B. Dwyer. Software Model Checking Case Studies. http:
//www.cis.ksu.edu/santos/bandera/index.html#case-studies, 1998.

26. A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In K. Apt, editor, Logics and Models of Concurrent Systems, pages 123-144.
Springer-Verlag, 1985.

27. M.Y. Vardi. On the complexity of modular model checking. In Proceedings, Tenth
Annual IEEE Symposium on Logic in Computer Science, pages 101-111, San Diego,
California, 26-29 June 1995. IEEE Computer Society Press.

28. P. Wolper. Specifying interesting properties of programs in propositional temporal
logics. In Proceedings of the 13th ACM Symposium on Principles of Programming
Languages, pages 184-193, St. Petersburg, Fla., January 1986.

29. M. Young, R.N. Taylor, D.L. Levine, K.A. Nies, and D. Brodbeck. A concurrency
analysis tool suite: Rationale, design, and preliminary experience. ACM Transac-
tions on Software Engineering and Methodology, 4(1):64-106, January 1995.

