
The Influence of Software Module Systems
on Modular Verification

Harry Li2, Kathi Fisler1 and Shriram Krishnamurthi2

1 Department of Computer Science, Worcester Polytechnic Institute
2 Computer Science Department, Brown University

Abstract. The effectiveness of modular model checking for hardware makes
it tempting to apply these techniques to software. Existing modular techniques
have been driven by the parallel-composition semantics of hardware. New ar-
chitectures for software, however, combine sequential and parallel composition.
These new, feature-oriented, architectures mandate developing new methodolo-
gies. They repay the effort by yielding better modular verification techniques.
This paper demonstrates the impact of feature-oriented architectures on modular
model checking. We have implemented a model checker and applied it to a real
software system to validate our prior, theoretical work on feature-oriented veri-
fication. Our study highlights three results. First, it confirms that the state-space
overhead arising from our methodology is minimal. Second, it demonstrates that
feature-oriented architectures reduce the need for the property decompositions
that often plague modular verification. Third, it reveals that, independent of our
methodology, feature-oriented designs inherently control state-space explosion.

1 Introduction

Recent advances and successes in the computer-aided verification of hardware fuel the
desire to effectively apply these ideas to software. The goal is to develop models and
analyses that simplify early detection of software design errors without disrupting the
design flow. Early detection requires that techniques for verifying software be closely
intertwined with the techniques and tools for designing and producing software. Verifi-
cation techniques and development techniques must therefore evolve together if verifi-
cation is to be viable for substantial software systems.

The hardware model-checking community has long demonstrated that the bond be-
tween design and verification can go beyond necessity to symbiosis: in particular, that
decomposing designs according to their modular structure can reduce an intractable
verification problem into a collection of tractable ones. The results of the tractable ver-
ifications can be combined into results on the otherwise-intractable overall design. The
general idea of modular verification applies to software as well, but with a technical
twist: modules in software design are evolving towards a model that violates the as-
sumptions underlying existing modular verification techniques.

Traditional modules encapsulate participants (or actors) and contain the code that
the actor needs to implement the features (operations/services) of the system. Mod-
ern software modules encapsulate features rather than actors. These feature-oriented
designs realign the module boundaries so that all of the code pertaining to a single



operation lies in the same module; the modules therefore cross-cut actors. Researchers
have proposed feature-oriented modules under many names (refinements [6], units [15],
aspects [23], collaborations [27], hyper-slices [28], and others); some have spoken of
feature-oriented designs (or feature engineering) in more general terms [32]. Ongoing
research on feature-oriented modules shows that they simplify key software engineering
problems such as configurability, maintainability, and evolution [3, 15].

Since features often operate exclusively from one another, feature-oriented modules
do not compose in parallel. Instead, their composition model employs a certain combi-
nation of parallel and sequential composition. Existing modular verification techniques
assume either purely parallel or purely sequential composition; accordingly, none of
them apply to feature-oriented designs. In previous work, we proposed a methodol-
ogy for modular verification of feature-oriented designs [17]. The existence of this
methodology, however, does not address the more crucial practical question: do feature-
oriented modules simplify or facilitate verification in practice?

This paper argues that feature-oriented modules are better suited for modular verifi-
cation than traditional module systems. We present a case study on verifying a substan-
tial feature-oriented software design with our new modular verification methodology.
We base our claims about the superiority of feature-oriented modules for verification
on the following claims:

– They simplify the problem of decomposition in verification because such modules
naturally align with properties. This reduces, and often even eliminates, the current
need for property decomposition in modular verification.

– They provide a felicitous framework for composing results of modular verifications
into results on whole systems, while avoiding some of the circularity difficulties
inherent in classical modular verification work.

– Their design discipline appears to even inherently control state-space explosion.

Section 2 motivates and illustrates feature-oriented modules by describing the soft-
ware system that we use in the case study. Section 3 summarizes our methodology
for feature-oriented modular verification. Section 4 presents our case study using this
methodology to verify the design described in Section 2. Section 5 discusses related
work, and Section 6 offers concluding remarks and outlines future work.

2 FSATS: An Example of Feature-Oriented Design

FSATS is a simulator for command-and-control missions. Missions involve a hierarchy
of (military) personnel; each person in the hierarchy commands a set of weapons. In
a simulated mission, certain personnel identify potential targets and initiate a commu-
nication protocol to determine who (if anyone) will attack the target. This decision is
based on a series of factors including the nature and location of the target, as well as the
availability of weapons at each point of the hierarchy. Once a person accepts responsi-
bility for a mission, he commands his weapons to attack the target.

One of the main challenges a programmer would experience in implementing FSATS

is that the personnel and weapons hierarchies need to be sufficiently flexible to simulate
a variety of military scenarios. This requires several kinds of customizations:



actor1 actor2 actor3 actor1 actor2 actor3

mission1

mission2

Fig. 1. Two modularizations of FSATS: actor-oriented (left) and feature-oriented (right); the
dashed boxes delimit module boundaries in each figure.

– Certain terrains preclude certain classes of weapons; the weapons controlled by
each person must change according to the terrain under simulation.

– Different branches of the military employ different personnel hierarchies; each per-
son’s superiors in the hierarchy must therefore be flexible.

– Different situations may require personnel to respond differently to the same nature
and location of target; thus the algorithm for deciding whether someone can accept
a mission requires flexibility, sometimes on-the-fly.

Constructing separate simulators from scratch for each potential scenario is infeasi-
ble. FSATS implementations therefore need to be customizable along all of these lines
with minimal reconfiguration effort. Recompilation is acceptable when building a new
simulator, but modification to existing code is not. Batory, Johnson, MacDonald, and
von Heeder [4] designed and implemented FSATS using feature-oriented modules to
endow it with these capabilities. This implementation used Batory’s JTS system [5], a
Java front-end developed to support feature-oriented modules. This section uses their
decisions and observations to motivate (Section 2.1) and define (Section 2.2) feature-
oriented design.

2.1 Feature-Oriented Designs

FSATS consists of personnel and weapons (collectively called the actors) and missions
for firing on targets (the features or operations that the actors cooperate to implement).
For each actor/mission pair such that the actor participates in the mission, FSATS con-
tains some code fragment(s) implementing the actor’s role in the mission. The archi-
tecture organizes these code fragments into cohesive constructs, such as classes and
modules. Viewing the actor/mission pairs as a grid, two organizations jump to mind
(Figure 1): modules can align with actors/columns (actor-oriented modules), or mod-
ules can align with missions/rows (feature-oriented modules). The figure shows the
code fragments as state machines, which is how FSATS expresses its mission protocols.

To motivate the appeal of feature-oriented modules, consider the problem of adding
or removing missions from a simulator. For a given set of target conditions, several ac-
tors are involved in deciding which mission to execute. Altering missions under actor-
oriented modules therefore requires modifying the modules for each actor involved in
the mission. As the code corresponding to a single mission may not be cleanly isolated



in the original code (since multiple missions may involve similar decision-making pro-
cesses), this editing operation is potentially expensive. With feature-oriented modules,
in contrast, each module encapsulates code for a mission centered around a particular
weapon under a certain set of conditions. To remove a weapon from the system, a pro-
grammer can simply re-compose the system without the missions that use a weapon;
the original implementor performed the necessary decomposition, so no editing of code
is required.

Feature-oriented modules have been called collaborations, since a module encapsu-
lates the code through which the actors collaborate to perform an operation. We adopt
the term collaboration in the rest of this paper. In FSATS, each actor/mission code frag-
ment is a class. A collaboration is therefore an ordered tuple of classes, one per actor.
Collaboration composition connects the classes for each actor via object-oriented inher-
itance. The resulting (single) class contains all of the code needed to implement each
mission for that single actor.

FSATS’s requirement of flexible personnel hierarchies mandates that classes within
collaborations have parameterized super-classes. Assume that battalion leaders report
to brigade leaders in one simulator and to division command in another. These simu-
lators require different collaborations for their core communications protocols. A de-
signer implementing a mission involving battalions does not know which communica-
tion collaboration to use; that decision happens at system-composition time. 1 The de-
signer therefore cannot fix the super-classes of the classes in his collaboration; he can,
however, impose constraints on them through interfaces. Classes with parameterized
super-classes are called mixins [8, 19, 30, 34].

Collaborations comprised of mixins provide the flexibility needed to implement
FSATS. Different FSATS simulators are built by selecting weapons and communications
collaborations and composing them to form a complete simulator. As described here,
collaborations obey the characteristics of components [19], such as separate compila-
tion, multiple instantiability and external linkage. A brief sampling of other success-
ful designs in this domain includes protocol layers and database modules [6, 7, 33], a
programming environment [14], test-bench generators [21] and verification tools [18,
31]. The growing application of collaboration-based architectures also reflects in the
increased language support for programming with collaborations.

2.2 A Formal Model of FSATS

Having motivated the overall architecture of FSATS, we now describe a more formal
model of collaborations, their interfaces, and their compositions that we use in our
verification methodology. In FSATS, two pieces of code implement a particular actor’s
role in a mission. The first is a state machine fragment that specifies a mission-specific
communication protocol. The second is a set of rules that govern whether an actor is
equipped to accept a particular mission (based on his weapons’ status and capacity).
Our case study verifies properties of the communication protocol, not of the weapons
selection rules. We therefore adopt a simpler view of FSATS in which each collaboration

1 In other words, collaborations are composed through client-controlled or third-party linking.



consists of a tuple of state machine fragments and an interface for composing collabo-
rations; each state machine fragment extends an existing (base) state machine by adding
nodes, edges, and/or paths between states in the base machine.

Each base or composed design specifies interfaces, in terms of states, at which
clients may attach extensions (i.e additional collaborations). We define interfaces for-
mally below. In our experience, new features generally attach to the base design at
common or predictable points; the set of interfaces is therefore small. This is important,
as the interface states will indicate information that we must gather about a design in or-
der to perform compositional verification of collaborations; a large number of interfaces
might require too much overhead in our methodology.

The following formal definition from our earlier paper [17] makes our model of
collaboration-based designs precise. The definitions match the intuition in the figures,
so a casual reader may wish to skip the formal definition.

Definition 1 A state machine is a tuple hS;�;�; s0; R; Li, where S is a set of states,
� is the input alphabet, � is the output alphabet, s0 2 S is the initial state, R �
S�PL(�)�S is the transition relation (where PL(�) denotes the set of propositional
logic expressions over �), and L : S ! 2� indicates which output symbols are true in
each state.

Definition 2 A base system is a tuple hM1; : : : ;Mki of state machines and a set of in-
terfaces. We denote the elements of machineMi as hSMi; �Mi; �Mi; s0Mi ; RMi; LMii.
An interface contains a sequence of pairs of states

hhexit1; reentry1i; : : : ; hexitk; reentrykii:

Each exiti and reentryi is a state in machine Mi. State exiti is a state from which
control can enter an extension machine, and reentry i is a state from which control
returns to the base system. Interfaces also contain a set of properties and other infor-
mation which are derived from the base system during verification; we describe these
properties in detail in later sections.

Definition 3 An extension is a tuple hE1; : : : ; Eni of state machines. Each Ei must
induce a connected graph, must have a single initial state with in-degree zero, and must
have a single state with out-degree zero. For each E i, we refer to the initial state as ini
and the state with out-degree zero as outi. States ini and outi serve as placeholders for
the states to which the collaboration will connect when composed with a base system.
Neither of these states is in the domain of the labeling function L i.

Given a base system B, one of its interfaces I , and an extension E, we can form
a new system by connecting the machines in E to those in B through the states in I ,
as shown in Figure 2. For purposes of this paper, we assume that B and E contain
the same number of state machines. This restriction is easily relaxed; the relaxed form
allows actors to not participate in each new feature, or to allow new actors as required
by new features. We also assume that the states in the constituent machines of base
systems and extensions are distinct.



in out
in

out in out

Base System

Collaboration

exit
exitexit

re-enter
re-enterre-enter

Fig. 2. Collaborations, interfaces, and composition

Definition 4 Composing base system B = hM1; : : : ;Mki and extension collabora-
tion E = hE1; : : : ; Eki via an interface I=hhexit1; reentry1i; : : : ; hexitk; reentrykii
yields a tuple hC1; : : : ; Cki of state machines. EachCi = hSCi; �Ci; �Ci; s0Ci ; RCi; LCii
is defined fromMi = hSMi; �Mi; �Mi; s0Mi ; RMi; LMii and its corresponding exten-
sionEi = hSEi; �Ei; �Ei; s0Ei ; REi; LEii as follows:SCi = SMi[SEi�fini; outig;
s0Ci = s0Mi ; RCi is formed by replacing all references to in i and outi in REi with
exiti and reentryi, respectively, and unioning it with RMi. All other components are the
union of the corresponding pieces from M i and Ei. We will refer to the cross-product
of C1; : : : ; Ck as the global composed state machine.

Definition 4 allows composed designs to serve as subsequent base systems by cre-
ating additional interfaces as necessary. This supports the notion of compound compo-
nents that is fundamental in most definitions of component-based systems.

3 Modular Verification of Collaborative Designs

Modular verification succeeds when the designer can isolate a portion of a design that
is relevant to a property. Assume all of the actors in a system participate in execut-
ing a feature that we wish to verify. If the design uses an actor-oriented architecture,
the modular structure naturally decomposes the design into individual actors. But the
property is typically in terms of the entire feature, not the individual actors. Thus, the
verification engineer must decompose the property to align with the modular structure.
Experience shows that this task can be extremely difficult in practice because it is hard
to isolate how one particular actor (or small set of actors) contributes to satisfying a
property. Furthermore, actor-based property decompositions can induce circularity in
the assumptions of behavior between modules [10].

In contrast, collaboration-based designs often avoid both of these problems because
the modules naturally decompose around features. If the property concerns a feature,
collaborations isolate the relevant portion of the system by design. Ideally, we should be
able to verify a property of a feature by analyzing the collaboration that implements that
feature in isolation from the rest of the system. Our methodology provides a mechanism
for doing this.

What about properties that concern actors rather than features? Wouldn’t an actor-
oriented architecture be more suitable for proving those properties? Collaborations ac-
tually support both actor-oriented and feature-oriented decompositions. A full design



Collaboration 
to Verify

x x

Base System

Fig. 3. Constructing collaboration cross-products to enable model checking. The shaded states
represent a reachable state in the overall system; this cross-collaboration state arises during the
transition from one feature to another.

is composed from a set of collaborations, which are tuples of mixins. If a property
concerns the behavior of a single actor across multiple features, a verification tool can
extract the actor’s mixins from the collaborations, compose them via inheritance, and
verify the property against the result. In short, collaborations can be composed either
vertically or horizontally (as shown in Figure 1) as needed. Designing systems to sup-
port both actor- and feature-oriented composition does, however, force designers to
break actors down into feature-sized pieces. The variety of systems that designers have
built using collaborations suggests that programmers are willing to do this work in ex-
change for the benefits associated with collaboration-based designs.

A Methodology For Verifying Collaborations Modularly

This section describes our methodology for verifying properties against individual col-
laborations using CTL model checking. The methodology currently supports the fol-
lowing activities:

1. Proving a CTL property of individual or compositions of collaborations.
2. Deriving preservation constraints on the interface states of a collaboration that are

sufficient to preserve each property after composition.
3. Proving that a collaboration satisfies the preservation constraints of another col-

laboration (or existing system). We establish preservation by analyzing only the
extension, not the composition of the two collaborations.

The main challenge in the methodology lies in the first activity. In order to model check
a property against a collaboration, we need a single state machine for the global cross-
product of the machine fragments in that collaboration. We discuss the issues in con-
structing this cross product below. The second activity involves recording some infor-
mation during the CTL model checking process. The third involves mostly routine CTL
model checking, with an initial seeding of labels on certain states of a design. We use
CTL rather than LTL because the CTL semantics supports the state labelings that we
need for our methodology; adapting our methodology to LTL is an open problem.



Let us examine the task of constructing the cross-product of the state machine frag-
ments in a collaboration. Figure 3 illustrates the situation: we wish to verify the lower
collaboration in isolation from the upper one. Since actors operate in parallel within
a collaboration, we must therefore construct the cross product of the state machine
fragments in the lower collaboration (as the “x”’s between the fragments in the lower
collaboration indicate). Cross-product constructions begin with a set of initial (cross-
product) states. What, though, are the initial states of the lower collaboration? Only the
base system contains the initial states for the completed design. For other collabora-
tions, only their “in” states (in the interface) give any indication of how to start running
the collaboration.

It is tempting to assume that all actors will enter the collaboration for a feature at the
same time: that is, to assume that the tuple of “in” states from the interface is reachable.
Unfortunately, practice violates this simplistic assumption. In FSATS, for example, the
person accepting a mission enters the collaboration for that mission and sends a mes-
sage to that effect along the chain of command. As other people receive the message,
they too enter the collaboration. While it is true that once one actor enters the collabo-
ration the others will (eventually) follow, they do not enter the collaboration all at once.
Figure 3 illustrates this situation through the shaded states; two actors have entered the
collaboration, while the middle actor has not yet made that transition. Detecting the ini-
tial states of the collaboration to verify is therefore non-trivial. The shaded states also
illustrate that some reachable cross-product states span collaborations. Such states are
reachable only during the transition from one collaboration (feature) to another.

In FSATS, all mission collaborations (all collaborations other than the base system)
attach to the base system. We have presented a formal algorithm that exploits this or-
ganization to identify the cross-collaboration states; our methodology uses these states
to drive the cross-product construction for the collaboration [17]. The construction in-
cludes the cross-collaboration states with the collaboration cross-product, which guar-
antees that our methodology visits all reachable cross-product states; details appear in
our earlier work [17]. This process may add a few states to the state machine fragments
in each collaboration; we explore the impact of these extra states experimentally in
Section 4. Once we identify the possible initial states, we use a standard cross-product
construction to obtain a single state machine suitable for model checking the collabora-
tion.

Having computed the cross-product for a collaboration, we use the standard CTL
model checking algorithm [9] to verify properties. Proving that composition preserves
the property is the next challenge. This is where collaboration-based verification di-
verges from standard approaches to modular verification. Under parallel composition,
modular verification techniques assume that composition does not add new behaviors
to a module. This is a reasonable assumption since the states of two modules interact
only through a cross-product construction. In contrast, composing collaborations adds
transitions, and thus behaviors, to states in a given module. These extensions are a nat-
ural and important part of collaborative designs. This characteristic, however, inhibits
the use of modular verification techniques based on parallel composition.

Fortunately, the limited communication between collaborations—which occurs only
at the interface states between the collaborations—reduces modular verification to a



1 32

4

exit

re-enter

init loadtime flighttime

completetime

end-mission
E(TRUE U mission_ready)

!(E(TRUE U !(E(TRUE U mission_ready))))

Fig. 4. A example of the methodology. The dashed states are placeholders for the interface states
to which the collaboration shown attaches. The formulas next to the “re-enter” state are the seeded
labels. CTL model checking determines labels on the “exit” state based on the seeded labels.

form of sequential verification. We use Laster and Grumberg’s algorithm [26] for com-
positional model checking under sequential composition for this step. Briefly, when
model checking a property against a collaboration, we record the labels that the CTL
model checking algorithm assigns to the interface states. When we attach a new collab-
oration to those states, we check that the new collaboration will not invalidate any of
those labels. We perform this step by attaching two dummy states to the new collabo-
ration (one each for exit and re-entry), seeding the dummy re-entry state with the saved
interface labels, and using the CTL model checking algorithm to derive labels on the
dummy exit state (see Figure 4). If the derived labels are consistent with the recorded
labels, the composition will preserve the property of the original collaboration.

With the exception of seeding states with properties, our methodology uses stan-
dard CTL model checking algorithms. The contribution of our methodology lies in
techniques for computing cross-products of collaborations and in identifying neces-
sary constraints on collaboration interactions to guarantee that our approach is sound
with respect to a conventional actor-oriented modularization. We base soundness on
the claim that our method would explore the same set of global states as in an actor-
oriented, parallel composition of the state-machine fragments. In other words, the state
spaces obtained by the two modularizations shown in Figure 1 are equivalent. Our prior
work [17] presents the additional constraints needed to achieve soundness; intuitively,
these constraints require forms of synchronization between actors at feature bound-
aries.2

4 Results on FSATS

Our FSATS case study was designed with several goals in mind:

– To validate our modular verification methodology on a significant software exam-
ple. FSATS suits this role well: a full FSATS system contains at least 14 actors partic-
ipating in at least 15 different mission types. The case study reported in this paper
used 3 representative mission types over 14 actors.

– To determine the levels of state-space reduction we can achieve through feature-
oriented modular decomposition.

2 These constraints are, incidentally, also necessary for modular testing.



– To determine the overhead due to our verification methodology.
– To explore whether feature-oriented modules provide decompositions that naturally

align with properties.

This case study employed a base system containing the core communications pro-
tocol and three missions: one in which the battalion fires a mortar, one in which a
platoon attacks with an artillery unit, and one in which the division commander fires a
set of rocket launchers. The mortar and artillery missions embody simple protocols and
yield small state machines. The rocket launcher protocol is more complicated because
launchers must scurry out of hiding places in order to fire, then return to hiding places
to reload during an attack. The coordination of launchers across hiding places gives
rise to a protocol similar to cache coherence: the division officer must know where the
rockets are at all times, and no two rockets can hide in the same spot at the same time.

We chose these three layers for several reasons. First, the mortar and artillery layers
share some common design variables, so there is potential for property clashes when
these modules are composed. Second, only a portion of the command hierarchy partici-
pates in deciding whether to use mortar or artillery, so we have the potential to eliminate
unnecessary participants, as we would do in a standard parallel decomposition. Finally,
the rocket launcher collaboration is substantially larger than the other two; ignoring
this collaboration when reasoning about either of the other two collaborations should
noticeably moderate the resources required during verification.

4.1 A Model Checker Supporting the Methodology

Although our methodology centers around the standard CTL model checking algorithm,
existing CTL model checkers do not support it well. Existing checkers embody a closed-
world assumption, in which all variables involved in the model are generated within the
model. This assumption is invalid in collaborative modular verification. When we verify
that composition does not invalidate existing properties of collaborations, we must seed
states with non-trivial CTL formulas that would be true in that state after composition.
Existing model checkers do not permit this seeding, though; they instead require all
formula labels to be derived during model checking. We could augment the model to
accomplish seeding—by adding an automaton sufficient to generate the desired labels—
but this change is both drastic and painstaking to perform manually; it also artificially
increases the size of the model.

We have implemented a prototype custom model checker that allows seeding of
states with arbitrary CTL formulas. If no states are seeded, the model checker behaves
as a conventional CTL checker. If states are seeded, then model checking results are
valid under the assumption that the seeded formulas hold in their corresponding states.
The rest of the methodology discharges this assumption.

Our checker also confirms that models satisfy the constraints that our methodol-
ogy requires for soundness. These constraints involve checking reachability of certain
specific states that we identify based on the interfaces between collaborations. It also
confirms that collaborations do not deadlock; this is important for the correctness of
our methodology (otherwise the sequential composition does not result in a continu-
ously running system). We have written the prototype in PLT Scheme [14].



(b) (c)(a)

Mission 1

Mission 2

Base

Fig. 5. State-spaces contrasted in our experiments. Each shape represents a state-machine frag-
ment. The shaded shapes indicate which fragments are included in each comparison.

4.2 Experiments on the Impact on State-Space Size

Our first experiment assumes that a feature is primarily characteristic of one collabo-
ration. We would want to verify that property against that collaboration alone for two
reasons. First, until we have established its correct implementation, it isn’t worth veri-
fying against other collaborations. Second, as independent developers, we may not even
know the other collaborations at development time; only the final system integrator will
know all the collaborations.

Figures 5-a and 5-b iconographically depict two approaches to constructing a state
space for this verification. The collaborative design of 5-a allows us to consider just
the collaboration of interest. The system in 5-b results from cross-producting actor-
oriented machines. For our experiment, we obtained these latter machines by manually
linking the machine fragments across collaborations, as we discuss in Section 3. The
table below presents this comparison.3

Mission States in Collaboration States in Collab+Base
Cross-Product (Fig. 5-a) Cross-Product (Fig. 5-b)

Mortar 23 127
Artillery 29 124
Rockets 4,888 10,032

A realistic system consists of numerous missions, not just one. Therefore, a more
thorough assessment of state spaces would study the machine sizes that result from
composing multiple missions. We contrast two verification tasks. The first verifies prop-
erties against the cross-product of an actor-oriented decomposition. This may be given
by the programmer; in FSATS, we construct the actors by combining their machine frag-
ments from multiple collaborations (Figure 5-c). The second verifies properties against
each of the collaborations separately, in the manner described in section 3. The first
two columns of the following table present information on the actor-oriented systems;
the third column contrasts this against the sum of the sizes of each collaboration cross-
product (because the verifications are performed independently). We use an asterisk
to indicate that a computation did not complete in the available memory; the number

3 These sizes do not include the environment models that may be needed for model checking.



of states reported is a lower bound on the total number of states, but the number of
transitions may include multi-edges (unlike the transition data in the completed runs).

Missions (Plus Base) States in Whole Transitions (Sum of) States in
System (Fig. 5-c) Individual Collabs

Mortar, Artillery 237 339 23 + 29
Mortar, Rockets 114,300* 1,132,069* 23 + 4888
Mortar, Artillery, Rockets 160,472 314,694 23 + 29 + 4888

These data underscore that verifying properties of multiple missions results in additive
state-space growth with collaboration-based verification; the growth with no modular
verification is potentially multiplicative.

The results from these two tables clearly establish that feature-oriented decompo-
sition can result in substantial state-space reductions. As we would expect, the savings
grow more impressive as we add missions to the simulator, because new missions do
not affect the state spaces of individual collaborations. Decomposition around collabo-
rations therefore controls the growth of state spaces in model checking.

The data in the first table indicate that our methodology is indeed effective in re-
stricting the number of states from the base system that need to be visited while model
checking a collaboration. The following table contrasts the total size of the base system
(restricted to the actors involved in the mission) with the number of base system states
needed to drive the construction of the collaboration cross-product:

Mission States in Base States from Base
Cross-Product To Drive Collaboration

Mortar 12 1
Artillery 73 4
Rockets 63 4

In the course of our experiments, we discovered that the choice of interface states
can affect our methodology’s overhead. In our first model, the Mortar weapon had an
almost trivial state machine in the base layer: one state for starting a mission and another
for ending a mission. These two states were the interface states to which we attached
collaborations involving mortars. The mission starting state was also the initial state for
the mortar in the base system. Having the same state be both the initial state of an actor
(in the base) and the interface “exit” state caused the number of overhead states to bloat
artificially to include the entire base system cross product; this had 12 states in the case
of the Mortar mission actors. After introducing a separate state to use as the interface
state, the overhead dropped to 1 state, which was what we expected it to be.

Our experiments yielded another surprising result. Based on the sizes of the state
machines for the individual actors (between 5 and 100 states per mission for each of
14 actors), we expected the number of cross-product states in each simulator to grow
dramatically as we added missions. While we did observe noticeable growth, particu-
larly after adding the rocket mission, the growth was not strictly multiplicative. We later
realized that the synchronization between actors needed to properly implement collab-
orations naturally limits state explosion (since the requirements limit the number of



global states involving states from multiple collaborations). This characteristic of col-
laborations is orthogonal to our methodology, and instead reflects a general benefit of
feature-oriented architectures.

To validate this claim, we removed some of the synchronization between actors at
collaboration boundaries and recomposed the simulators. Removing the synchroniza-
tion allows one actor to start a new mission upon completion of an old one, without
negotiating with the other actors. This led to a noticeable increase in state-space size.
For example, the unsynchronized base+mortar simulator had 257 states (versus 127),
while the unsynchronized base+rocket simulator had 63,657 states (versus 10,032). We
were unable to finish computing the unsynchronized size for the simulator with all three
missions within our available memory.

4.3 Modular Verification Experience

Applying existing modular verification techniques can be difficult in practice due to the
need to decompose properties while avoiding circular arguments. We therefore wanted
to gauge whether our methodology helped or hindered the verification process. This
section discusses our observations from using our model checker to verify several prop-
erties of FSATS. We do not discuss the actual properties or running times and memory
usage. The properties are standard CTL invariants and eventualities. We omit the re-
source usage data for two reasons. First, we are using explicit-state model checking, so
state-space size is a reasonable predictor of performance (unlike with BDDs). Second,
our current tool is a proof-of-concept prototype for our algorithms so we expect the
resource usage would be artificially high.

Assume a user wants to verify a property about the mortar mission, such as “once
started, the mortar eventually fires all rounds”. The user provides our model checker
with three pieces of information: the base machines for the FSATS actors, the collab-
oration implementing the mission, and the property to verify. Our tool automatically
constructs the cross-product of the collaboration (using information from the base ma-
chines), checks whether the collaboration satisfies needed synchronization restrictions,
and calls the model checker. Error traces, if any, are of the usual flavor and are expressed
relative to the collaboration cross-product. The property and the constraints needed to
confirm that it holds after composition are stored with the collaboration. When a user
composes a new collaboration onto a system, our tool automatically confirms that ex-
isting properties of the collaboration and system are preserved.

In short, a user’s interaction with this system is similar to that with a conventional
model checker, with the exception of indicating which collaboration each property
should be proven against. There is no need to decompose the system or the property.
The tool manages all of the assumptions required for modular verification (this entails
deriving labels during earlier model checking runs). There is no danger of introduc-
ing circularity, because the user does not need to introduce any information; all of the
decomposition information comes directly from the design architecture.

Our tool’s automated checks for synchronization requirements (mostly various reach-
ability checks) also helped us detect some design errors. For example, the re-entry in-
terface states must be reachable within a collaboration. Our early model of FSATS had
some errors that violated this restriction. None of the properties we tried to check would



have detected the problem. Thus, our methodology does provide some simply sanity
checks on designs that can help locate real errors in system models.

5 Related Work

Several verification techniques use design information to restrict the state space to the
portion relevant to a given property. Cone-of-influence reductions [25] use dependence
analyses between variables to eliminate portions of the state space. These analyses re-
tain portions of the state space needed to reach the relevant portion of the design from
the initial states; our method eliminates most of the states traversed from the initial
states to the point of entry to a collaboration. Cone-of-influence reductions are also less
effective if multiple parts of the design involve the same variables. Multiple FSATS lay-
ers refer to shared variables that also occur in the properties we wish to verify; all of
these layers would be explored under a cone-of-influence reduction.

Variants of code layering have been used in both software engineering and verifi-
cation contexts. The term “layered architecture”, however, generally assumes that each
layer refines a more abstract layer already in the system. Such assumptions correspond
to abstraction or refinement layers in verification, in which one layer is shown to sub-
sume the behavior of another [25]. This work is orthogonal to ours, which does not
require any abstraction relationship between collaborations.

Several researchers have described modular verification techniques based on paral-
lel composition [16, 20, 24, 29]. Some preliminary research [2, 11, 26] considers mod-
ular model checking under sequential composition, which is closer to the model used
in software. Laster and Grumberg’s approach [26] handles designs with only one state
machine; it also lacks a design framework, such as collaboration-based design, to drive
the decomposition of the design. Subsequent work obtains this decomposition from hi-
erarchical state machines [2] or StateCharts [11], but still considers designs with only
one state machine. Our work, in contrast, includes multiple state machines per collab-
oration, which greatly complicates the verification problem. Alur and Yannakakis cite
the problem of sequential verification over multiple state machines as open for future
work [2]. Alur et al. [1] discuss analysis techniques for sequential refinements within
modules that are composed in parallel; their work, unlike ours, does not support coordi-
nation between sequential refinements across modules. None of these works compares
the state space sizes in their techniques against those of traditional model checking.

Work on pre- and post-condition verification in theorem proving is another form of
modular reasoning under sequential composition. Such work views code at the level of
individual, stand-alone functions and instructions, rather than at the level of coordina-
tion between multiple actors in a system.

6 Conclusions and Future Work

Modular verification is an attractive approach to managing state explosion. Modules, by
design, delineate somewhat independent portions of a system. In theory, we should be
able to exploit this independence to decompose intractable verification problems into
tractable ones about each module (or small groups of modules). Experience shows that



modular verification is extremely difficult to use in practice. The main challenge lies
in property decomposition: the need to decompose a property of a system into sub-
properties of its modules. Traditional modules reflect physical independence (different
devices on a chip, for instance) rather than behavioral independence. Since properties
concern behavior, conventional modular structures are misaligned with properties and
make modular decomposition difficult.

Collaborations are modules that encapsulate code involved in the same operation in
a system. They have received increasing attention in software engineering because their
separation of behavior simplifies software evolution, configuration, and maintenance.
This paper explores the effect of these designs on modular model checking, especially
on state space sizes and on the need for property decomposition.

We present a case study of applying a new model checker we have developed to
a real command-and-control simulator called FSATS. The results are extremely pos-
itive. Collaborations dramatically reduced the size of the state space to be explored
during model checking, while requiring no property decomposition. Furthermore, we
observed that the programming discipline of collaborations requires certain synchro-
nizations that naturally control state-space growth. The ease of modular verification in
this framework, combined with the measured reductions in state space sizes, suggest
that collaborations provide more useful modularizations for verification than conven-
tional modules do.

We plan to continue our study along several lines. First, we need to confirm our hy-
pothesis that collaboration-based decomposition achieves greater reductions than cone-
of-influence analysis. Second, we need to extend our current methodology to support
data-intensive designs, instead of just control-intensive ones. FSATS will continue to be
an interesting example for this effort, as it involves a combination of a control-intensive
communications protocol between personnel and data-intensive decisions within the
protocol. Third, our current methodology assumes that collaborations specify control-
flow via state machines. We would like to extend existing work on deriving state ma-
chines from source code [12, 13, 22] to extract collaboration-oriented models. A related
question asks whether our collaboration-based organization is too restrictive; it may be
possible to extract collaboration-like behavior from code that is composed in parallel,
perhaps by examining synchronization points.

References

1. R. Alur, R. Grosu, and M. McDougall. Efficient reachability analysis of hierarchic reactive
machines. In International Conference on Computer-Aided Verification, volume 1855 of
Lecture Notes in Computer Science, pages 280–295. Springer-Verlag, 2000.

2. R. Alur and M. Yannakakis. Model checking of hierarchical state machines. In Symposium
on the Foundations of Software Engineering, pages 175–188, 1998.

3. D. Batory, C. Johnson, B. MacDonald, and D. von Heeder. Achieving extensibility through
product-lines and domain-specific languages: A case study. In International Conference on
Software Reuse, June 2000.

4. D. Batory, C. Johnson, B. MacDonald, and D. von Heeder. FSATS: An extensible C4I simu-
lator for army fire support. In Workshop on Product Lines for Command-and-Control Ground
Systems at the First International Software Product Line Conference (SPLC1), August 2000.



5. D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for implementing domain-specific
languages. In International Conference on Software Reuse, June 1998.

6. D. Batory and S. O’Malley. The design and implementation of hierarchical software systems
with reusable components. ACM Transactions on Software Engineering and Methodology,
1(4):355–398, Oct. 1992.

7. E. Biagioni, R. Harper, P. Lee, and B. G. Milnes. Signatures for a network protocol stack: A
systems application of Standard ML. In ACM Symposium on Lisp and Functional Program-
ming, 1994.

8. G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheri-
tance. PhD thesis, University of Utah, Mar. 1992.

9. E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concurrent sys-
tems using temporal logic specifications. ACM Transactions on Programming Languages
and Systems, 8(2):244–263, 1986.

10. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
11. E. M. Clarke and W. Heinle. Modular translation of Statecharts to SMV. Technical Report

CMU-CS-00-XXX, Carnegie Mellon University School of Computer Science, August 2000.
12. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and H. Zheng.

Bandera : Extracting finite-state models from java source code. In International Conference
on Software Engineering, 2000.

13. M. B. Dwyer and L. A. Clarke. Flow analysis for verifying specifications of concurrent
and distributed software. Technical Report UM-CS-1999-052, University of Massachusetts,
Computer Science Department, August 1999.

14. R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler, and
M. Felleisen. DrScheme: A programming environment for Scheme. Journal of Functional
Programming, 2001. To appear.

15. R. B. Findler and M. Flatt. Modular object-oriented programming with units and mixins. In
ACM SIGPLAN International Conference on Functional Programming, pages 94–104, 1998.

16. B. Finkbeiner, Z. Manna, and H. Sipma. Deductive verification of modular systems. In
Compositionality: The Significant Difference, volume 1536 of Lecture Notes in Computer
Science, pages 239–275. Springer-Verlag, 1998.

17. K. Fisler and S. Krishnamurthi. Modular verification of collaboration-based software de-
signs. In Symposium on the Foundations of Software Engineering, Sept. 2001.

18. K. Fisler, S. Krishnamurthi, and K. E. Gray. Implementing extensible theorem provers. In
International Conference on Theorem Proving in Higher-Order Logic: Emerging Trends,
Research Report, INRIA Sophia Antipolis, September 1999.

19. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 171–183, January
1998.

20. O. Grumberg and D. Long. Model checking and modular verification. In International
Conference on Concurrency Theory, volume 527 of Lecture Notes in Computer Science.
Springer-Verlag, 1991.

21. Y. Hollander, M. Morley, and A. Noy. The e language: A fresh separation of concerns. In
Proceedings of TOOLS Europe, Mar. 2001.

22. P. Inverardi, A. Wolf, and D. Yankelevich. Static checking of system behaviors using derived
component assumptions. ACM Transactions on Software Engineering and Methodology,
9(3):239–272, July 2000.

23. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In European Conference on Object-Oriented Programming,
June 1997.



24. O. Kupferman and M. Y. Vardi. Modular model checking. In Compositionality: The Sig-
nificant Difference, volume 1536 of Lecture Notes in Computer Science. Springer-Verlag,
1998.

25. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, 1994.

26. K. Laster and O. Grumberg. Modular model checking of software. In Conference on Tools
and Algorithms for the Construction and Analysis of Systems, 1998.

27. K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspectual components. Tech-
nical Report NU-CCS-99-01, College of Computer Science, Northeastern University, Mar.
1999.

28. H. Ossher and P. Tarr. Multi-dimensional separation of concerns in hyperspace. Technical
Report RC 21452(96717), IBM, Apr. 1999.

29. C. S. Pasareanu, M. B. Dwyer, and M. Huth. Assume-guarantee model checking of software:
A comparative case study. In Theoretical and Practical Aspects of SPIN Model Checking,
volume 1680 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

30. Y. Smaragdakis and D. Batory. Implementing layered designs and mixin layers. In European
Conference on Object-Oriented Programming, pages 550–570, July 1998.

31. K. Stirewalt and L. Dillon. A component-based approach to building formal-analysis tools.
In International Conference on Software Engineering, 2001.

32. C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf. A conceptual basis for feature
engineering. Journal of Systems and Software, 49(1):3–15, Dec. 1999.

33. R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr. Building adaptive sys-
tems using Ensemble. Technical Report 97-1638, Department of Computer Science, Cornell
University, July 1997.

34. M. VanHilst and D. Notkin. Using role components to implement collaboration-based de-
signs. In ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages
& Applications, 1996.


