Verilfieation as If your life
depends on It

Strategic CAD Labs

Rob Gerth
May 19, 2001

Wheredis all started (for Intel)

1n 1994, Intel took a $475M charge against
revenues to cover replacement costs and

Inventory writedown due to the Pentium®
FDI1V problem

—Lousy crisis management
—But, post-silicon errata are extremely expensive
—Nothing wakes up higher management better..

- Strategic CAD Labs (SCL) founded as a result

Stirategic CAD Labs (SCL)

Design Technology
Tools Research

<: SCL
Communication

Products

WCCG

Wireless :
Products i Mobile Desk Top Enterprise
i Products Products Products

Invent design technologies that will be critical to Intel
Horizon: 3+ years
33 researchers;

intgl.

Disaster

1n 1994, Intel took a $475M charge against
revenues to cover replacement costs and

Inventory writedown due to the Pentium®
FDI1V problem

—Lousy crisis management
—But, post-silicon errata are extremely expensive

—Also, nothing wakes up higher management
better...

- Strategic CAD Labs (SCL) was founded as a
result

Intgl.

Seven years later

Full formal verification against 1EEE 754
floating-point standard

-verify gate-level RTL all traditional dynamic
validation Is performed on

—mostly routine
—easily within development timeframe

—excellent RO thru easy porting; even across micro-
architectures

#00d reasons to be confident same can be
achieved for

—control- and memory-heavy designs
—off-chip protocols/chipsets: Scalability Port, USB

intgl.

Not so fast...

Fransistor level problems

Cannot be modeled on gate-level

Because o and o# are held
to O at reset, It takes 2
unit delays for the o and
0#£ to stabilize ...

- what I the Input data
was available for only 1
unit delay?

2Still on discrete level!

Intgl. sFormal equivalence verification issue

JAnalog’ errors

esspeed-paths

there iIs a scenario that
leads to a signal switching

2 pico seconds too late

Plysical design issues
.. T

'-.'_ |
I = N -“'., =1 -
T
E‘\.-.ﬁ""ﬁ.

VDD

e

Elinctional correctness only one
of many design worries

&Silicon errata extremely costly

— highly developed classical validation technology
which will find many bugs

&FV does not automatically acquires a place

Positioning FV

eMultiple overlapping ?-processor projects
— any time RTL changes, FV must be redone
— formal verification must be done within the projects
— FV requires more expertise than validation
— separate verification teams

&5

PesItioning FV ctd

eExpectation management
— Initially: obtain blessed RTL
— no amount of validation uncovers additionals bugs
- FV of no interest If it applies to ‘sanitized’ RTL
— Recently: also hunting for high-quality bugs
- Jury still out

SCL's FV
technology

STE symposium (CAV 2000)

18

Reguirements (Whig's history)

esComplete specifications usually not available

esAccess to design engineers is always limited
- Need exploration/debugging capability
— Need versatile ways to build circuit APIs

&FV IS expensive

— Optimize common case: proof failure/debugging not
success

— Use API to Isolate effort from RTL changes

— Reuse/maintain verification artifacts

— Amortize cost over changes and/or multiple designs
— Must be sound

: tel — Clear what has (not) been proven

EorEe: verification system

esFunctional Language: FL
- What?
— General purpose interpreted programming language
— Everything is a function, I.e., no side effects
- Lazy semantics (can deal with infinite objects).
- Why?

— Very high level (10 to 100 times smaller than
equivalent C program)

— Convenient to program APIs or FV scripts In
— Easy to reason about (precise & simple semantics)

- The preferred language type for writing theorem
provers

intgl.

Eunctional Language: FL ctd

zMain features:
— Strongly typed, i.e., safe
— Polymorphic type inference, i.e., convenient
— Pattern matching built in, i.e., readable
— Abstract data types, I.e., extremely safe

- BDDs first class objects, I.e., easy to write symbolic
algorithms

— Garbage collection is built in, 1.e., safe and convenient

— Dynamic BDD variable reordering built in, I.e.,
convenient

— Efficient (basic) model checker available: STE

intgl.

Exampliesnon-traditional fl code

- let av = vari able “a”;
a: : bool

Ol el vari able “b”";:
b: : bool

. (av XOR bv) = av;
I t:: bool
b!

> (av XOR bv) == av;
I t::bool
=

> Ix.?y. ((x AND y) OR NOT (x XOR VY));
| t:: bool

Exampies more complex fl code

| et cAX (Mbdel R s s') set =
|l et set’ = bdd cur to next set in
quant _forall s (R ==> set’);

|l et cAG (Model R s s’) set =
|l etrec AGR cur =
| et new =
let cur’ = bdd cur to next cur In
quant forall s (set AND (R ==>cur’)) in
| f new == cur then cur else AGR new I n
AGR T,

~50% of the code for a (simple) symbolic CTL model checker!

Intgl.

Viedel checking in Tl

2 Model checker (STE) Is a built-in command in fl

2 As a result: the specification and the commands to
Invoke the model checker are both fl programs.

— Result:

— Running large number of (smaller) model checking runs
becomes practical

— Reasoning about the verification results become reasoning
about functional programs.

— Mechanisms to manage and organize large programs are
Immediately available for large specifications/proofs.

— The programming language provides powerful (textual)
abstraction mechanisms making it easier to write high-level

specification.

Eorte \Waveform display

Eile Selection [Time line

n I'I
&L U

:FSTEEh
fsebdats fpadrdysT26h
fsebdats fpatrdysTEEh
fsehdats,/parssTEEh[E2:0]
fsehdats /rddatactrsTE26h[2:0]

fsehdats /rdinprogresssT725h

fzehdats/rdlastZchunksT268h

5.0

=] = Draws single signals and/or
- ml vectors

z Can add, delete, duplicate,
expand (vectors) any selected
waveform

2z Allows user to lock a time line
and get values back annotation
onto the circuit canvas

2 \Waveforms can be saved as
PostScript code

Forte Circult visualization

= cwl0

- |F
Eile Find pattern ﬂmeWﬂ‘
m = Example of
fsehdats/ 1942 hdl[29] .
bssnpdatardys?%hb:@':;:DJ baCk_ .
annotation of

current circuit
ehc_data/wibtranssize ... Values

“sehdats/wrdatactrinsT26h([2:0] ...

EIxEI

_ For symbolic
sebdats/in-resetseghldsT26h . .. - ; D—fsehdats;’sentlastwr eXpreSSionS a

pull-up window
iehdats fwrxferpredrivesT26h . - .
fschdats/urlastchunks726h . 0 | . 0 Is available for
‘sebdats/sendingohunkisT2Eh . 1
¢ ’ T . more details

fseharbs/ratioctrinsT20h([3:0] ...
ebarhs/zsclklgenln-tnpphl srnnh .

Intgl.

EeKrEte theorem prover

& Light-welghit theorem prover
— Model checking results as axioms
- ensure that STE runs cover all cases
— Decomposition of high-level specifications
- model checkable lemma’s

Eleatiigg point ADD example

z |EEE Std 754 says:

— “... each of the operations shall be performed as If it first
produced an intermediate result correct to infinite precision
and unbounded range, and then [rounded] this intermediate
result to fit in the destination’s format.” (section 5)

- “When rounding toward negative infinity, the result shall be
the format’s value closest to (and no greater than) the
Infinitely precise result.” (section 4.2)

zThe top-level spec for FADD (rounding down) IS

norma AND normb ==>
(roundi ng_node = TO NEG | NF) ==>
r <= a + b AND /[l no greater than
a+b<r +ulp /] closest to

EADD FL Ref Model

norma AND normb ==>
(roundi ng_node = TO NEG I NF) ==>
r<=a+b<r +ulp

High level /
spec /
/
I

II

Reference //.Find t he amount of shift needed
Model let diff = ex2 '"-'" exl 1In
ﬂ let rsh = MNv diff min

/[Adapted from Feldnman and Retter,

/| Conputer Architecture (McGawH I, 94)
[pp. 489-491

et ADDnmodel pc rc inl in2 =

[/ Do the shift

let sgfl' = srshift mrsh (sgfl@F]) in

| et sgf 2 ;sng@F] I N
FEU RTL /] Performthe sum (or subtract)
let add = (sign fpl = sign fp2) in

let sum= |IF add THENv (s gf2 ' f1')
ELSEv (sgf2' '-' sgfl')
/1 Now performroundi ng

Intal.

A closer look at the ref model

High level
spec

i

Circuit API

Executable
reference
model

A

A

API adds design-specific
information about signal

names, timing, ...

Isolates ref model from

RTL changes

intgl.

\J

FPU RTL

Theorem proving + model

checking (manual, highly
reusable)

STE (automatic, reusable)

Verifiying RTL against Ref Model

g Adder BDDs blow up

because of variable shift

P

Theerem prover support

zNeed to split STE runs in cases with fixed
mantissa shifts

— theorem prove to make sure all cases are covered

20n high level

— decompose IEEE spec into properties of rounding,
exponent/mantissa values etc.

— Model check these against FL reference model

What did we obtain

= EEE level functional specs for FP operations of
the FEU

=Proved correct datapath functionality for these
operations

— all variants, precision and rounding modes

zCompliance verified of the same gate-level
descriptions

— on which all pre-silicon dynamic validation Is
performed

— from which the actual silicon 1s derived

eEXxtensive reuse (see next slide)
25

intgl.

Reuse

=P Pro ->P 111
— ?-arch change: pewer saving modes
— minor APl changes
- Forte’'s waveform and circuit viewers essential
— complete reuse of FL models and Thm proving effort

2P 111 streaming SIMD Instructions
— redesigned API

- moderate redesign of reference models (1 float ? 2
packed floats/ints)

— after that: high reuse
&P Pro ->P IV
— completely new ?-architecture
— reuse of FL models and Thm proving effort

intgl.

Indbstrial strength FV

& Theory development and practical system building
and use should go hand-in-hand

— Clean theory makes system building manageable
— Use of system drives theory development

zDeveloping a general solution iIs much more
efficient than developing an “optimal” point tool

2No assumption that all FV can be “push button”

& In developing practical FV tools, think BIG

— Today’s circuit are extremely large; even minor
Inefficiencies become bottlenecks

software Is

intgl.

Moore’s law

10000 ~2B Transistors 100,000 ~30 GHz
1,000 Transistors Double 10,000 | Frequency Doubles

100Every Two Years 100 | Two Years

Transistors 1
(MT)

Pentium Il proc
Frequency 449 Pentium® Pro

1 (MHz) 286 Pentium® proc

10

0.1
1
0.01 égOOS
0.1

'70

Density Delivery

entium ® Pro

Pentium ® proc
486

E

4004 ﬁﬂ'@ Pentium®
8008 85 rocessors

M@/‘ %86

0] '80 '90

00) 1.5u .8u .35u .18u du

>
=
N ~
GC)N
05
- o~
(<))
22
@)
o

7

Obviously, this trend cannot continue

Consequences

zMarketing drive to use full transistor.budget
for performance Increase

— super scalar, out of order, branc:: pred':tion,
speculation, ...

ePower density trend forcz2sy...ange in micro-
architectural design

— clock gating, t*1 »*»_iny, dynamic frequency & dlI/dt
control, ...

Moore's curse

es# execution paths roughly exponential In
number of gates (transistors)

#sClassical validation (and design) methods are
fighting a loosing battle

16

Relative
of B_UQS Detection
filed i
against (%)
design
1 I
- S |

Pentium® pentum® Pentium®4 Next Pentium® Pentium ® Pentium ® 4
Pro Generation Pro

inteL Bug creation detection

sMescapes can have an

R

IAGreasing $ Impact

Product Ramps

Intel produces more
MICroprocessors now In
2 quarters than the
386/486 did In 12

Pentium ® 1V

Pentium ®

Basié Formal Verification
technoelogy. not really keeping up

S 2 s
| = Al

il

(1L

= Symbolic Model Checking:

#~400 state variables with rich
control logic

2 Symbolic Trajectory Eval.

#~8,000 state variables with limited
control logic

#zGeneralized STE for rich control??

& Certainly not on similar
exponential growth curve

Although trend data for
software design are hard to

come by, 1 would maintain
they follow the same pattern

Pucking the trend

eDeploy FV on more ‘abstract’ models
— Hence, integrate FV In the design process

- otherwise very difficult to migrate FV results to
Implementation

— Implies FV must evolve from arcane art to mature
sclence
- methodology
— versatile tool support

DUeking the trend ctd

& everage abstract interpretation/static

analysis in FV tools
Crude syntactic

Abstract interpretation Model checking

analysis

— Recent examples

— Bebob; Ball/Rajamani; Microsoft research
— AX and successors; Holzmann, Bell labs

— Research suggestion

— Develop abstract interpration FV tool bench +
methodology for clean language (say functional)

QUESTIONS?

TWoe key STE ideas

eTransition relation ultra-partioned
— graphi of boolean gates + their transfer functions
— post Images partitioned in same way

Compute over below lattice
— X Is a fixed point for every gate

— as long as a gate is not relevant for computation
Its Iinputs (and outputs) will have value X

GSTE far reaching
generalization of STE and 7\ {ﬁT\}

formally defined as an ({ I {FK }T}
abstract interpretation T 1

intgl.

