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Abstract. Rigorous description of protocols (a sequence of events) be-
tween components is mandatory for specifications of distributed compo-
nent frameworks. This paper reports an experience in formalizing and
verifying behavioural aspects of the Enterprise JavaBeansTM specifica-
tion with the SPIN model checker. As a result, some potential flaws are
identified in the EJB 1.1 specification document. The case also demon-
strates that the SPIN model checker is an effective tool for behavioural
analysis of distributed software architecture.

1 Introduction

Software component technology is gaining importance in constructing large-scale
distributed applications such as E-Commerce systems, and has also been widely
accepted in the industry as a new technology for object-oriented software reuse
[21]. Notable examples are COM/DCOM, JavaBeans/Enterprise JavaBeans, and
a new component model of CORBA proposed by OMG. Systems can be con-
structed by implementing a component that encapsulates application logic and
making it run with existing components in a pre-defined execution environment.

A component is a constituent of a system, and is a reusable unit that has a
definite interface for exchanging information with other constituents. The main
feature of the technology is an integration framework that is based on a spe-
cific computational model for components and supports the basic information
exchange protocols among them. User-defined components can only be run suc-
cessfully if they conform to the specification that the framework assumes. This
implies that the integration framework specification should be described in an
unambiguous manner [10].

Current component frameworks, however, have not been successful in pro-
viding precise specifications in their documents. Specification documents use a
natural language (English) and informal diagrams for illustrative purposes. It
is not uncommon to find ambiguities, inconsistencies or even bugs in the in-
formal documents. Thus, the application of formal techniques is necessary for
creating rigorous specification documents for component frameworks. Actually,
Sullivan et al. [19] have identified some ambiguities in the description of the
COM aggregation and interface negotiation specification by using a precise de-
scription written in the Z notation. Sousa et al. [18] have shown that modeling
with Wright [1], an Architecture Description Language (ADL), is effective for
behavioural analysis of the EJB 1.0 specification.



This paper reports an experience using the SPIN model checker [5] for be-
havioural analysis of the Enterprise JavaBeans component architecture. The
main contributions of the present work can be summarized as follows. (1) Re-
sults show that the SPIN model checker is an adequate tool for behavioural
analysis of distributed software architecture as compared with other tools such
as Wright [1] or Darwin [12]. (2) The case identifies there are some potential
flaws in the EJB 1.1 document [20] in terms of behavioural specification.

2 Enterprise JavaBeans

Enterprise JavaBeansTM is a component architecture for distributed business ap-
plications. This section briefly describes the Enterprise JavaBeans (EJB) com-
ponent architecture and presents some of its behavioural specifications. The
material in this section is based on the EJB 1.1 specification document [20].

2.1 The Component Architecture
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Fig. 1. The EJB Architecture

Figure 1 illustrates an overview of the EJB component architecture, as well
as introduces several principal participants. Client is a client Java application
that uses a JNDI Naming Server to look up an object reference of a Home in-
terface. Home is a FactoryProxy responsible for creating a new Bean instance,
and returns an object reference of a Remote, which is a RemoteProxy [9]. The
Remote accepts requests from the Client and delegates them to the Bean, which
executes these requests under the control of the Container. In addition, the ar-
chitecture provides several runtime-services such as passivation, persistency, and
garbage collection. All client requests to the Bean are made through the Home-
Proxy or the RemoteProxy objects. The Container may intercept the original
requests and then control invocations on the Bean, while making it possible for
the runtime-services to interleave between client request invocations.
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Fig. 2. Session and Entity Beans

There are two types of Enterprise JavaBeans : Session Beans and Entity
Beans (Figure 2). An Entity Bean represents data stored in persistent storage
and is a shared resource. The internal values of an Entity Bean are synchronized
with the contents of persistent storage through the runtime service. A Session
Bean, on the other hand, executes on behalf of a single client, and may implement
long-lived transaction style application logic to access several Entity Beans.
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Fig. 3. Class Diagram

Figure 3 presents a fragment of the class diagram for Entity Beans. In the
figure, EJBHome, EJBObject, EnterpriseBean, and EntityBean are the four Java
interfaces that the EJB component framework provides. The EJBHome interface



describes the client’s view of the Home shown in Figure 1, while EJBObject
corresponds to the Remote. The EntityBean interface specifies the basic APIs
that should be implemented by every Entity Bean. The EnterpriseBean is a
common super-interface for both EntityBean and SessionBean3.

In order to develop a new Entity Bean, three Java constructs must be defined:
(1) <XXX>Home as a sub-interface of EJBHome, (2) <XXX> as a sub-interface of
EJBObject, and (3) <XXX>Bean as an application class for implementing the
EntityBean. The interface <XXX>Home adds application-specific create and find
methods. The interface <XXX> should have application-specific business methods,
which are denoted here by <BM>.

The class <XXX>Bean is a concrete bean definition that implements all of the
methods specified by the EntityBean interface, as well as provides application-
specific methods: ejbCreate and ejbFind are the counterparts of create and
find of <XXX>Home, respectively. <BM> directly corresponds to <BM> of <XXX>.
When a client invokes, for example, create method of <XXX>Home, the Container
intercepts the request and then delegates it to <XXX>Bean instance in the form of
an ejbCreate method invocation. Most of the methods defined in EntityBean
are APIs for runtime-services. The passivation service uses ejbPassivate and
ejbActivate, while the persistency service invokes ejbLoad and ejbStore.

The EJB 1.1 specification document describes the roles of the participants
and all of the APIs in the form of Java interface descriptions. It is important
to note that most of the methods are accompanied by exceptions in addition to
normal functionalities. All explanations are written in a natural language.

2.2 Behavioural Specifications

Behavioural specifications show an external view of component architecture in
terms of event sequences. With the EJB architecture, an event corresponds to
a method invocation. Thus, the behavioural specifications consist of traces of
method invocations. Below shows some example descriptions of behavioural as-
pects adapted from the EJB 1.1 specification document.

Figure 4 is a lifecycle model of an Entity Bean (adapted from Figure 23 on
page 102 [20]). The lifecycle consists of three states, and each method contributes
to a transition between the states. For example, a business method invoked by a
client can only be executed when the Entity Bean is in its ready state. In view
of the lifecycle model, the passivation service is an event initiator that makes the
Entity Bean move between the ready and pooled states by using ejbPassivate
and ejbActivate.

In addition, the document employs Object Interaction Diagrams (OIDs) to
illustrate typical event sequences. Figure 5 is an example of an OID for the
Entity Beans (simplified and adapted from Figure 29 on page 139 [20])4. The
3 It is not shown in the figure.
4 Division of labour between the two participants in a rectangle, EJBObject and
Container, is dependent on a particular implementation, and thus the rectangle
may sometimes be treated as one entity (on page 62 [20]).
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Fig. 4. Lifecycle of Entity Beans

diagram depicts various portions of event sequences that relate to a passivation
service and business method invocation by a client.

A client request is directly delegated to the Entity Bean when the bean
is in the ready state (see top of the diagram). The passivation service may
spontaneously decide that the bean should be swapped out. This is accomplished
through a sequence of method invocations; ejbStore followed by ejbPassivate.
In Figure 4, it can be seen that the bean is now in the pooled state. At this point,
a client may invoke another business method (see middle of the diagram). Since
the bean is not in the ready state, the business method cannot be executed, and
is thus suspended. The EJB server is then responsible for returning the bean to
the ready state by issueing ejbActivate and ejbLoad. Finally, the suspended
request is executed by the bean.

In addition to lifecycle models, the EJB 1.1 specification document describes
behavioural aspects such as those described through OIDs. An OID, however, is
just an example trace and is not a complete specification. One must infer from
OIDs the intention of the original designer, as well as obtain precise specification
descriptions from them. Furthermore, the document uses a natural language to
describe temporal constraints related to particular runtime-service methods. For
example, on p. 113 it says that the Container5 invokes at least one ejbLoad
between ejbActivate and the first business method in the instance. These con-
straints are used as sources for behavioural properties to be verified.
5 It is identified here with the entity represented by the rectangle in Figure 5.
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3 Formalization

This section focuses on the issues and approach related to formalizing the com-
ponent architecture in Promela as compared with other specificands such as
communication protocol and distributed algorithm [5] or program verification
[6] which Promela has been used successfully.

3.1 Issues and Approach

Since the specificand, the EJB framework, has different characteristics from those
that have been formalized and analyzed in Promela/SPIN, there are several is-
sues that must be considered before formalization. First, the original specifica-
tion is centered around APIs, and an API defines exceptional cases as well as



a normal functionality6. Each API is a Java method accompanied by possible
application-specific and system exceptions.

Second, one cannot predetermine the behaviour of clients that access bean
instances. Dependent on the possible client behaviour, the EJB framework must
show valid behaviour regardless of the client. In particular, some clients may
terminate, while others may not.

Third, since behavioural specification is based on event sequences, Linear-
time Temporal Logic (LTL) formulae to represent properties should involve
atomic proposition that describes an occurrence of a particular event, method
invocation. In contrast, validity of atomic propositions in LTL is determined by
states. This makes it necessary to devise a way to encode an event occurrence.
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Fig. 6. Promela Processes

Figure 6 shows the overall configuration of the Promela processes. Three
processes with a cyclic arrow are event initiators. The Client process issues
a request such as create or business method, and is thus considered to be an
event initiator. The role of Container is dual. It accepts events from other
processes as well as generates events that implement runtime services such as
passivation or persistency. The StartUp process needs further explanation. The
StartUp process is responsible for setting up the initial environment necessary
for a Client and a Bean to be executed properly. For example, Entity Beans are
not required to be created by a client, but are created in advance. The StartUp
process for such a case is responsible for creating and initializing the Entity
Beans. Thus, introducing the Client and StartUp processes as event initiators
is an approach that can be used to deal with the the second issue above. This
6 The Wright group has observed similar characteristics in the cases [2][18].



approach also contributes to creating a well-structured formal model because
the functionality of the EJB server and processes for setting up verification
environment are clearly separated. In regard to the first and the third issues,
one can make use of the Promela language constructs, which will be discussed
in detail using actual Promela code in Section 3.2.

3.2 Promela Model

In order to describe method invocation on an object and return from the method,
one first introduces two communication channels between the caller and calleé
processes. And an extra channel is defined for transporting possible exceptions
from the object.

#define NBUF 1

chan mthd = [NBUF] of { short };

chan retv = [NBUF] of { short };

chan excp = [NBUF] of { short };

The chan mthd is used for invoking method and messages flow from the Container
to the EntityBean. The other two, retv and excp, are for messages going in the
opposite direction. The channel definitions assume that the method name and
the values are short and properly #defined.

The EntityBean in Figure 6 is represented by a simple Promela process that
waits for method invocation from the mthd channel. The fact that any method
can be invoked at any time is expressed using a do...od statement with an
endLoop label. Each entry in do...od corresponds to a method, and its body
is just an if...fi statement, which in turn has more than one branch. Each
branch corresponds to either an exception or a normal termination. Since the
if...fi has channel send statements in its guard positions, any of the branches
can be executed at any time, which simulates a non-deterministic choice between
exceptions and normal terminations. Therefore, one can encode exceptions in the
Promela model, which resolves the first issue in Section 3.1 in a compact manner.

#define ejbActivate 106

#define ejbPassivate 110

#define BM 120

...

proctype EntityBean ()

{

endLoop:

do

:: mthd?ejbActivate -> if :: retv!Void :: excp!SysError fi

:: mthd?ejbPassivate -> if :: retv!Void :: excp!SysError fi

:: mthd?BM -> if :: retv!Value :: excp!AppError :: excp!SysError fi

...

od

}



The EJBObject in Figure 6 is an example process that terminates. It is a
RemoteProxy object for accepting requests from the client, and delegating them
to the Container, and it ends its lifecycle after handling of remove method
by the client. Since an EJBObject is capable of accepting requests from more
than one client7, it must distinguish between each of the clients’ requests. In the
Promela description below, the remote channel carries two channels as well as a
method name as its formal parameters. By sending different channel parameter
values each time, it is possible to simulate a situation in which each message
sent corresponds to a different method invocation event.

chan remote = [NBUF] of { short, chan, chan };

chan retval[NC] = [NBUF] of { short };

chan except[NC] = [NBUF] of { short };

proctype EJBObject()

{

chan returnValue; chan exceptionValue; short value;

progressLoop:

endLoop:

do

:: remote?remove,returnValue,exceptionValue

-> { request!reqRemove; retvalFC?value

-> returnValue!value; goto endTerminate }

unless { exceptFC?value -> exceptionValue!Error; goto endTerminate }

:: remote?BusinessMethod,returnValue,exceptionValue

-> { request!reqBM; retvalFC?value -> returnValue!value }

unless { exceptFC?value -> exceptionValue!Error }

od;

endTerminate:

skip

}

The Client in Figure 6 is a Promela process that accepts two channel pa-
rameters when it runs. Since it invokes a request either on a HomeProxy or on
a RemoteProxy, the Client is an event initiator that always sends messages
via, for example, the remote channel, and waits for completion of the invoked
method execution.

proctype Client(chan ret; chan exc)

{

...

MainLoop:

do

7 More precisely, the EJBObject for Session Bean should be ready for multiple requests
while the one for Entity Bean need not.



:: remote!BusinessMethod,ret,exc ->

if :: ret?value -> skip :: exc?value -> goto endClient fi

:: remote!remove,ret,exc ->

if :: ret?value -> goto wrapUp :: exc?value -> goto endClient fi

:: home!remove,ret,exc;

if :: ret?value -> goto wrapUp :: exc?value -> goto endClient fi

od;

...

}
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Fig. 7. Container for Entity Beans

As for the Container process, Figure 7 only shows the main behaviour in
terms of the state transition diagram a lá Statechart [14] because the Promela
code is too lengthy to be shown here8 . The diagram is mainly derived from
the lifecycle model in Figure 4, and appropriately augmented by studying the
descriptions in other parts of the original document. The ready and pooled
states in the diagram correspond to the states with the same labels in Figure 4;
however, the ready state is modeled as a super-state with two sub-states. Such
elaboration is needed for a proper interpretation of potential interference re-
lated to persistency service, which was found necessary during the formalization
8 It is some 250 lines of Promela codes.



process.
The diagram shows all of the necessary transitions for implementing the

main behaviour of the Container. For example, a transition from pooled to
load enabled is notated as

reqCreate / ejbCreate;ejbPostCreate,

which indicates the following behaviour: when the Container receives a reqCreate
from the EJBHome, the Container invokes two consecutive methods, ejbCreate
and ejbPostCreate, on the EntityBean9.

Finally, one goes back to the third issue in Section 3.1, which is related to
representation for describing the occurrence of a particular event as an atomic
proposition in LTL formulae. In the above description of EntityBean, one can
observe that the process is, at a certain time, in a state in which it is ready to
receive a particular event. When, for example, an ejbActivate message is at the
head of the mthd channel, the EntityBean process can be considered to be in a
state where mthd?ejbActivate is executable. It is also possible to check whether
or not a state satisfies such a condition by using a square brackets notation such
as mthd?[ejbActivate], which can be used as a required atomic proposition
representing a particular event occurrence.

The SPIN feature for automatic translation of LTL formulae can also be
used. For example, as described in the last paragraph of Section 2.2, the EJB
specification requires that the Container invokes at least one ejbLoad between
ejbActivate and the first business method in the instance. To verify the prop-
erty, the SPIN can be used to generate a never automaton, where the process
description needs appropriate #defines.

spin -f "! []((q8 && <>q2) -> (! q2 U q12))"

#define q2 mthd?[BusinessMethod]

#define q8 mthd?[ejbActivate]

#define q12 mthd?[ejbLoad]

Note that the LTL formula is negated because the SPIN model checker handles
negative claims in the form of never automaton for verification.

4 Behavioural Analysis

This section presents some concrete examples of behavioural properties and the
results of analysis.

4.1 Entity Beans

As discussed in Section 3.1, an appropriate client process is necessary for analyz-
ing the behaviour of the EJB server. Three varieties of clients are formulated, and
9 As can also be seen in Figure 4.



their behaviour can be compactly expressed in terms of event sequences gener-
ated by the client. (1) client-1 is a standard client that generates {create, find};
BM ∗; remove, (2) client-2 starts with a find method (find; BM∗; remove),
and (3) client-3 does not end with remove ({create, find}; BM∗). The individ-
ual client uses a somewhat different StartUp process because each run needs a
different event sequence for setting up the environment to successfully start the
client. A standard checking command for deadlock-freeness (run -q) is executed
on each client model, and all succeed.

Next, various properties, formulated in terms of LTL formulae, are verified
against the standard client-1. The first property of interest is the behaviour of in-
voking a business method (BM) on a passivated Entity Bean (Figure 4), and can
be validated by the following two LTL formulae. When an Entity Bean instance
is in the pooled state and a client requests a BM on the instance, ejbActivate
is eventually executed (E1). The formula (E2) states that an ejbLoad is invoked
between the ejbActivate and the BM on the instance.

(E1) ✷(pooled ∧ BM Client → ✸ejbActivate)

(E2) ✷(ejbActivate ∧ ✸BM → (¬BM U ejbLoad))

In a similar fashion, the EJB server invokes ejbStore between the last business
method (BM) and ejbPassivate. (E3) is also satisfied.

(E3) ✷(BM ∧ ✸ejbPassivate → (¬ejbPassivate U ejbStore))

The EJB server must obey a set of “trivial progress” properties. The proper-
ties can be compactly expressed as (E4), showing that a client request M leads
to an actual method invoked on an instance.

(E4) ✷(M Client → ✸M Bean)

At first, this seems to be of no interest at all because such properties are trivially
satisfied. However, they actually reveal several interesting characteristics of the
EJB server.

In the case of the client’s create request, in which M Client is create and
M Bean is ejbCreate, the expected formula is satisfied. The ejbCreate method,
however, should be accompanied by an ejbPostCreate (Figure 4), and thus the
LTL formula should be (E5).

(E5) ✷(create → ✸(ejbCreate ∧ ✸ejbPostCreate))

The formula becomes false because there are situations in which ejbCreate
raises a system exception and thus ejbPostCreate is not executed. This shows
that there is some complexity in taking into account the possible occurrence of
exceptions, which is mandatory for behavioural analysis of the EJB server.

The next property has to do with “spontaneous allocation” of a fresh bean
instance. The EJB server has the liberty of keeping more than one behaviourally
equivalent Entity Beans and allocating them for client requests. (E6) is a prop-
erty to represent one such behaviour, which is found to be true.



(E6) ✷(ejbRemove → ✸(BM Client → ✸BM))

Behaviour relating to a remove request is of particular interest because the
trivial progress property (E7) does not hold.

(E7) ✷(remove → ✸ejbRemove)

Analyzing the output trace reveals that a possible livelock caused by an infi-
nite iteration of ejbStore and ejbLoad prevents the EJB server from the ex-
pected progress. In addition, (E7) can be checked by setting the weak-fairness
flag (run -f -a). This filters out situations that has the previous livelock. The
formula, however, still fails because of potential interference between ejbRemove
and ejbPassivate. To study the situation, please refer to Figures 4 and 7. The
state-diagrams show that two transitions, ejbRemove and ejbPassivate, are
possible from the ready to the pooled state. Also ejbRemove is initiated by a
client remove, while ejbPassivate is an event from the runtime passivation ser-
vice that is generated in an asynchronous way independent of any client requests.
The identified situation is that the bean instance moves to the pooled state by
ejbPassivate while a client explicitly requests a remove. And thus it does not
lead to an occurence of ejbRemove. The interference is a potential flaw in the
EJB 1.1 specification document [20] that can be seen by careful examination of
(E7).

It is also possible to try a trivial progress for the case of business method
(BM).

(E8) ✷(BM Client → ✸BM Bean)

The formula proves to be false because of a possible livelock of the ejbStore
and ejbLoad as discussed in relation to (E7). Analysis under the weak-fairness
condition also leads to a failure. This is because an internal exception occurs in
the EJB server. For example, when a client issues a BM request on an instance
in the pooled state, it involves more than one method execution (see E1 and
E2). It is possible that one of the method, for example ejbActivate, raises an
exception. If this is the case, the EJB server cannot continue the service on
the instance, and thus the property does not hold. If the property (E9), which
takes into account the exception, is used, it is found to be successful under the
weak-fairness condition.

(E9) ✷(BM Client → ✸(BM Bean ∨ Exception))

As mentioned above, several trivial progress properties are not satisfied due
to either possible exceptions or some other anomalous situation. However, it is
easy to confirm that there exists at least one desirable sequence for satisfying
each property. One may try a negation of a property that corresponds to a
desirable behaviour expressed in a deterministic manner. (E10) is an example
case for a business method (BM).

(E10) ¬(✸(BM Client ∧ ✸BM Bean))



The SPIN protocol analyzer (pan) fails to show the correctness of the property
and generates a sequence that leads to a failure. The sequence of minimal length
is exactly what one would expect. Below is an edited output of the trace in the
form of a Message Sequence Chart (MSC).

q\p Container EJBObject Bean Client

--------------------------------------------------

13 . . . remote!BM,6,8

13 . remote?BM,6,8

1 . req!BM

1 req?BM

3 mthd!BM

3 . . mthd?BM

Therefore, it is true that at least one event sequence fulfills the trivial progress
property for BM.

4.2 Session Beans

Session Beans have two options that can be specified at the time of deployment:
stateful or stateless. The two options are not very different to the bean developer;
however, they exhibit quite different runtime behaviour. Thus, formalization
and analysis of Session Beans are actually conducted to model two independent
behaviours, although some common behaviours are effective for both models. As
in the case of Entity Beans, one introduces a variety of clients with an adequate
StartUp process for each client case.

Common Behaviour One important property in terms of behavioural specifi-
cation is in relation to concurrency control. According to the document, if a client
request arrives at an instance while the instance is executing another request,
the container must throw an exception for the second request. Session Beans
must satisfy such a “non-reentrant” property. The property can be formulated
in an LTL formula such as (S1).

(S1) ✷(Invoked 1 ∧ ✸BM 2
∧ (¬(Return 1 ∨ Exception 1) U Exception 2)

→ ✸(Return 1 ∨ Exception 1))

Some remarks on the formula are in order: (a) the server is in a state in which it
has already accepted the first BM (Invoked 1), (b) the second BM is requested
afterward (✸BM 2), (c) the first BM is not completed before the second BM
request ends with an exception (¬(Return 1 ∨ Exception 1) U Exception 2),
and then (d) the first BM request results either in a normal termination or in
an exception (✸(Return 1 ∨ Exception 1)).

As for concurrency control, two varieties of clients are used to examine the
behaviour: (1) client-s1 is a simple process for invoking only one BM , (2) client-
s2 is an infinite process that generates BMs iteratively (BM+). In addition,



the standard check for deadlock-freeness is executed on the following three runs:
(a) two client-s1’s are involved, (b) two client-s2’s are involved, and (c) three
clients-s2’s are involved. All are found to be deadlock-free; however, the size of
the searched state space is different for each run (Table 1)10.

Table 1. Analysis of Non-reentrant Property

Run �States �Transitions Depth

(a) 3,742 8,217 66
(b) 6,161 12,225 295
(c) 75,769 167,884 986

Although the state space for the present EJB server model is not large in com-
parison to other published cases of practical interest, reducing the size by an
appropriate abstraction is still important for efficient checking since the sizes
drastically increase as in Table 1. To prove the property (S1), the case (a) was
used because of the simplicity.

Stateful Session Beans In addition to the three client models explained above,
two other models are used: (1) create; BM ∗; remove, and (2) create; BM∗.
The first client model is a standard one used in most analyses. The second
one, however, is mandatory for properties involving timeout. The EJB server
must generate a timeout event for garbage-collecting of possibly unused Stateful
Session Bean instances either in the method_ready or in the passive state. In
the case of the method_ready state, the timeout event must be followed by an
ejbRemove on the instance. From the passive state, on the contrary, instances
just disappear without any further events.

The timeout makes the situation somewhat complicated for a Stateful Session
Bean. For example, the trivial progress property for business method (BM) is
not satisfied. This is because an instance is forced to leave the ready state due
to a possible timeout event. The only alternative is to verify the property (S2)
that takes into account the timeout situation.

(S2) ✷(BM Client → ✸(BM Bean ∨ timeout))

Stateless Session Beans For a client model of Stateless Session Beans, the
simplest one capable of generating BM∗ is sufficient. This is because the EJB
server is responsible for the creation and deletion of Stateless Session Beans. A
create request by a client becomes no-op for Stateless Session Beans.

Stateless Session Beans do not have any conversational state, and all bean in-
stances are equivalent when they do not serve a client-invoked method. Stateless
10 The metrics are the case for a Stateless Session Bean.



Session Beans are similar to Entity Beans in that the EJB server will allocate a
suitable bean instance even if one has already been removed. This is because a
Stateless Session Bean has a “spontaneous allocation” property that an Entity
Bean has. This property can be confirmed by checking the LTL formula (E6)
mentioned above.

A property specific to Stateless Session Beans is “spontaneous removal or
automatic garbage collection.” Stateless Session Beans do not allow an explicit
remove operation by clients. The EJB server is responsible for deciding whether
an instance is no longer necessary and invoking an ejbRemove method on it.
In the present Promela model, the Container invokes ejbRemove in a non-
deterministic manner. The LTL formula for the property is (S3), which says
that ejbRemove is eventually invoked when the instance is in the ready state.

(S3) ✷(ready → ✸ejbRemove)

The result is false due to a livelock of continuous BMs. The counter example
sequence (livelock of BMs) is exactly the case in which the client accesses the
bean heavily and thus the EJB server does not issue any ejbRemove on the bean.
This confirms that timeout is generated only when the client is in a think time
and does not invoke any BM at all. This is in accordance with the EJB 1.1
specification.

4.3 Discussion

The EJB 1.1 document [20] describes specifications from various viewpoints,
thereby making it necessary to have a consistent model incorporating all of the
viewpoints scattered throughout the document. As most of the descriptions are
written in a natural language, the document uses many ambiguous “words.” One
specific example is related to the persistence service; invocations of the ejbLoad
and ejbStore can be arbitrarily mixed with invocations of business methods.
The intention of the author of the document is understandable, but, the word
“arbitrarily” needs a concrete interpretation. The model in Section 3.2 adapts
an interpretation that can be seen in the state-model in Figure 7. The model
still leads to a livelock situation, which is revealed in the analysis.

Although the lifecycle model such as the one in Figure 4, can be used as
a basis for formalizing the behavioural aspect, the model in the document is
too simple. Reaching the final model in Figure 7 requires a thorough reading
of the document and feedback from the analysis. This could be made easier if
the EJB document had chapter(s) that concentrated on precise descriptions of
behavioural aspects.

After obtaining a formal model, it is possible to conduct behavioural analysis
in which properties are expressed in terms of LTL formulae. Thanks to numerous
literature on the use of LTL formulae [3][8][13], one finds it not hard (though
not easy either) to formulate properties using LTL formulae. It, however, still
requires a trial-and-error in formulating and checking the LTL formulae. This is
partly because a naive leads-to property such as (E4) does not hold in nearly



all cases. It was a surprise at first, but was found immediately from the fault
traces that many interesting situations, either possible exceptions or other run-
time anomalies, were not considered in the formulae. The trial-and-error process
was a great help in understanding the behaviour of the EJB server. The SPIN
model checker could be described as a light-weight design caclulator [16] used in
iterative processes for refining the formal models.

Some LTL formulae were deemed to be false because of a possible livelock in
the EJB server, some of which could be avoided by setting a weak-fairness flag.
One must be very careful about properties proved under the fairness condition
because a real system may incorporate a scheduler that behaves differently from
what was assumed at the time of the analysis [4]. In the present study, however,
the source of livelock is where the actual implementation should be taken care
of. For example, a livelock with ejbLoad and ejbStore can be attributed to
the present design artifact written in Promela, which is believed to be a faith-
ful model in accordance with the presentation of the original document. This
is understandable because the document does not mention anything about the
implementation. As in proving (E7) and (E9), analysis under the fairness con-
dition revealed other interesting situations, which are important to the present
study. As shown in Section 4.1, proving (E7) results in a failure, which indicates
that the bean instance moves to the pooled state by ejbPassivate even when
a client explicitly requests a remove. The analyses have revealed potential flaws
in the EJB 1.1 document.

In summary, most of the problems are identified in the formalization pro-
cess in which a consistent model to integrate various aspects is obtained. Early
stages of behavioural analysis can contribute to debugging the model as well
as being a great help in understanding the specificand. Finally, note that the
EJB 1.1 specification document [20] is not a design document. It is more or less
abstract and lacks information detailed enough for use in software development.
However, because the document is used as a reference for those involved in the
EJB technology, more detailed description is mandatory. As the present study
revealed with the formalization and analysis, improvements must be made in the
EJB 1.1 specification document.

5 Comparisons

Behavioural analysis has been most successful in software architecture. Wright [1]
and Darwin [12] are the two practical tools that have been applied to distributed
software infrastructure of non-trivial complexities [2][11]. Comparing Wright and
Darwin with the approach using the SPIN model checker in some degrees of detail
is mandatory for discussing whether the SPIN model checker is an adequate tool
for behavioural analysis of distributed software architecture.

Wright [1] follows the Component-Connector model of software architecture
[17], which provides a general framework for describing various architecture
styles from a unified viewpoint. To explain briefly, a component is a compu-
tational entity while a connector is an abstract infrastructure that connects the



participating components. Connector is responsible for how the components ex-
change information, which basically describes the behavioural specification of
the specificand architecture. In particular, Wright adopts Communicating Se-
quential Process (CSP) as a rigorous notation for describing the behavioural
specifications of connectors. The concrete syntax of Wright can be considered as
a syntax-sugaring of a large CSP process description in a structured manner.

CSP is the essence of Wright in terms of behavioural specification, and its
formal analysis can be conducted by means of FDR (Failures/Divergences Refine-
ment) [15], a model-checker for CSP. Since FDR is based on failure-divergence
semantics, various properties such as deadlock-freeness are checked through a
refinement test (�). Wright formulates several verification problems using its
surface syntax.

Using FDR to analyze behavioural aspects of software architecture requires
some familiarity with failure-divergence semantics and how to express various
properties in terms of the refinement relationship, thus making it less accessible
for a wide audience. Another drawback with Wright is that the specificand must
be modeled as a connector if behavioural analysis is applied. In other words,
Wright does not provide a methodology for analyzing systems with more than
one connector.

Sousa et al. [18] apply Wright to formalizing and analyzing the EJB compo-
nent integration framework as defined in the EJB 1.0 specification. The entire
specification of the EJB server, including the Container and two client-accessible
proxies, is modeled as a single large connector. Thus, traceability between the
original specification and the resultant formal model is weak. The present formal
model written in Promela (Section 3.2) shows a more intuitive mapping between
the two; an object in the original document is modeled as a Promela process.

Additionally, Sousa et al. identify a potential flaw relating to an interference
between delegation of business method and ejbPassivate, as well as provide a
remedy. They also discuss that the flaw may be due to their modeling but not
to the EJB 1.0 specification. The same flaw, however, did not manifest itself in
the present case study with Promela. On the contrary, the study in Section 4.1
identifies other flaws such as one relating to a potential interference between an
execution of remove request and ejbPassivate.

Darwin [12] uses diagram notation for the structural aspects and FSP (Finite
State Processes), a variant of CSP, to describe behavioural specifications, which
can be analyzed by the LTSA (Labeled Transition System Analyzer) model
checker. The basic model of Darwin is the Component-Port model, and does
not have explicit notion of Connector. The model is basically equivalent to the
Promela model; a component and a port can be mapped to a Promela process
and a channel respectively.

LTSA is a well-designed model-checker that can be used even by a novice.
LTSA is easy to use, but restricts itself in terms of the power of verification.
For safety analysis, a deterministic FSP process (property automaton) is used
to show correct behavior. LTSA model checks a product of the target and the
property automaton. For liveness analysis, FSP provides a declarative way to



specify a set of progress labels, which is equivalent to ✷✸q and ✷(p → ✸q) in
LTL formulae, and is less expressive than the full LTL used in the SPIN model
checker.

Sullivan et al. [19] formalize structural aspects of the COM model in the Z
notation, and point out that there is a conflict between aggregation and interface
negotiation in the original specification. This is a successful non-trivial result
of applying formal methods to component architectures. Jackson and Sullivan
[7] employ Alloy to formalize the model, which was originally formulated in
the Z notation, and uses Alcoa, an automatic analysis tool to show that the
same flaws manifest themselves in the specification. Thus, they demonstrate the
effectiveness of the automatic analysis tool. The present case study deals with
the behavioural aspects of the EJB framework, and it does not deal with the
structural ones. The use of both approaches may be necessary for analyzing
advanced component architectures.

Kobryn [9] uses a UML Collaboration diagram to model component archi-
tectures. First, a pattern for component frameworks is introduced, and then
the pattern is instantiated to the two important frameworks, EJB and COM+.
Since the approach makes use of UML Collaboration diagram, the main concern
is to illustrate the participant roles and structural relationships between the
participants. Behavioural analysis is not conducted. The present case study con-
centrates on behavioural analysis using the SPIN model checker, but was limited
to the EJB framework. However, it can be easily applied to other component
frameworks such as COM+ because COM+ and EJB can be instantiated from
a general pattern, as illustrated by Kobryn in his paper. Finally, the configura-
tion of the Promela processes in Figure 6 is almost identical to that of Kobryn’s
pattern11. This ensures that the model in the present case study is natural, and
thus shows a sufficient traceability with the original document.

6 Conclusion

This paper describes how the SPIN model checker was used for behavioural anal-
ysis of the Enterprise JavaBeans component architecture. This is a case study
on applying a model-checking technique to a non-trivial real-world software arti-
fact. Using concrete examples, the present work was able to demonstrate that the
SPIN model checker can be used as an effective tool for behavioural analysis of
distributed software architecture. Further, the case was also able to successfully
identify several potential flaws in the EJB 1.1 specification document.

Finally, further work is needed on integration of the UML-based approach,
for example, in [9] and the SPIN-based model that is amenable to automatic
behavioural analysis. This is inevitable for the model-checking technology to
gain a wide acceptance from software engineers.

11 The authors did not know about the work in [9] before writing this paper.
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