
Distributed LTL Model-Checking in SPIN?

J. Barnat, L. Brim1 and J. St�r��brn�a2

1 Faculty of Informatics, Masaryk University Brno,
Botanick�a 68a, Brno, Czech Republic

fxbarnat,brimg@fi.muni.cz
2 Department of Computer and Information Science, University of Pennsylvania

200 South 33rd Street, Philadelphia, PA 19104, USA
jitkas@saul.cis.upenn.edu

Abstract.

In this paper we propose a distributed algorithm for model-checking
LTL. In particular, we explore the possibility of performing nested depth-
�rst search algorithm in distributed SPIN. A distributed version of the
algorithm is presented, and its complexity is discussed.

1 Introduction

Veri�cation of complex concurrent systems requires techniques to avoid the state-
explosion problem. Several methods to overcome this barrier have been proposed
and successfully implemented in automatic veri�cation tools. As a matter of fact,
in application of such tools to practical veri�cation problems the computational
power available (memory and time) is the main limiting factor. Recently, some
attempts to use multiprocessors and networks of workstations have been under-
taken.

In [UD97] the authors described a parallel version of the veri�er Mur'. The
table of all reached states is partitioned over the nodes of the parallel machine,
thus allowing the table to be larger than on a single node and perform the ex-
plicit state enumeration in parallel. For the model checker SPIN [Hol97], a sim-
ilar approach towards distributed reachability analysis was proposed in [LS99].
This distributed version of SPIN, however, uses di�erent ways to partition the
state space than Parallel Mur'. Yet another distributed reachability algorithm
was proposed in [AAC87], but has not been implemented. Other recent at-
tempts to use distributed environment of workstations for parallel model check-
ing are [HGGS00,BDHGS00].

Unlike the original SPIN, the distributed algorithm proposed in [LS99] per-
forms non-nested depth-�rst visit of the state space. Therefore it only carries
out reachability analysis but does not implement model checking of LTL formu-
las. In this paper, we propose a distributed algorithm that model checks LTL
formulas, based on nested depth-�rst search. The basic idea is as follows. The

? This work has been supported in part by the Grant Agency of Czech Republic grant
No. 201/00/1023.

algorithm starts to explore the state space in the same way as the distributed
SPIN does, that is it uses (non-nested) distributed depth-�rst visits. When an
accepting state of the B�uchi automaton, called here a seed, is visited the seed
is remembered in a special data structure (dependency structure). Nested DFS
procedures for seeds are started separately in appropriate order given by the
dependency structure. Only one nested DFS procedure can be started at a time.
The algorithm thus performs a limited nested depth-�rst search and requires
some synchronisations during its execution. Our aim was to experimentally ex-
plore how much will the synchronisation in
uence the overall behaviour of the
tool. To our surprise, even using this very simple method one is able to deal
with veri�cation problems larger that those that can be analysed with a single
workstation running the standard (non-distributed) version of SPIN.

The experimental version of the algorithm has been implemented and a series
of preliminary experiments has been performed on a cluster of nine PC based
Linux workstations interconnected with a 100Mbps Ethernet and using MPI
library.

The rest of the paper is organised as follows. We start with a section which
brie
y describes the distributed version of SPIN. The following section explores
in more detail the main reasons why it is diÆcult to extend directly the dis-
tributed SPIN to check LTL formulas and also proposes a possible solution.
Then we describe the additional data structures required by our algorithm and
present the pseudo-code of the algorithm. Finally, the complexity and e�ective-
ness of the algorithm are discussed.

2 Distributed SPIN

In this section we brie
y summarise the main idea of the distributed version
of SPIN as presented in [LS99]. The algorithm partitions the state space into
subsets according to the number of network nodes (computers). Each node is
responsible for its own part of the state space. When a node computes a new
state, �rst it checks (using the procedure Partition(s)) if the state belongs to
its own state subset or to the subset of another node. If the state is local, the
node continues locally, otherwise a message containing the state is sent to the
owner of the state. Local computations proceed in the depth-�rst search manner
using the procedure DFV (a slight modi�cation of the SPIN's DFS procedure).
However, due to the distribution of work, the global searching does not follow
the depth-�rst order. This is also one of the reasons why this algorithm cannot
be used for LTL model-checking. The algorithm uses a new data structure U[i]
holding the information about pending requests on the node i. The distributed
algorithm terminates when all the U[i] queues are empty and all nodes are
idle. To detect termination a manager process is used. Each node sends to the
manager a message when it becomes idle and a di�erent one when it becomes
busy. Correct termination requires the re-con�rmation from each node and the
overall number of messages sent and received must be equal.

2

The pseudo-code bellow illustrates the original algorithm used in the dis-
tributed version of SPIN.

procedure START(i, start_state);

begin

V[i] := {}; { already visited states }

U[i] := {}; { pending queue }

j := Partition(start_state);

if i = j then

begin

U[i] := U[i] + start_state;

end;

VISIT(i);

end;

procedure VISIT(i);

begin

while true do

begin

while U[i] = {} do begin end;

S := extract(U[i]);

DFV(i,S);

end;

end;

procedure DFV(i, state);

begin

if not state in V then

begin

V[i] := V[i] + state;

for each sequential process P do

begin

nxt = all transitions of P enabled in state;

for each st in nxt do

begin

j = Partition(st);

if j = i then

begin

DFV(i, st);

end

else

begin

U[j] := U[j] + st;

end;

end;

end;

end;

end;

3

3 Problems with Extending the Distributed SPIN

When we want to adopt directly the technique of nested DFS approach to dis-
tributed computing we encounter two main problems. By simply allowing more
nested DFS procedures for di�erent seeds we may obtain an incorrect result,
which can be demonstrated by the following example:

?>=<89:;76540123B
2 // ?>=<89:;C

3 // ?>=<89:;D

4

xx

?>=<89:;76540123A

1

99ssssssss

If two nested DFS procedures were run simultaneously on both seeds A and B
then the cycle through the state B might not be detected. The outcome depends
on the relative speeds of both nested DFS procedures. In case that the nested
DFS procedure originating from A visits the state C �rst, the nested DFS pro-
cedure starting in B will not be allowed to continue through C and, as a result,
the cycle B;C;D;B will not get detected.

In general, whenever the subgraphs generated by two di�erent seeds do not
have an empty intersection there is a possibility that some cycle may not be
detected. A simple criterion to determine whether it is possible to run two or
more nested DFS procedures in parallel is to �nd out whether the corresponding
intersections are empty or not. However, verifying this condition could result in
searching the entire state space.

An obvious solution to this problem is to store for each state the information
in which nested DFS procedure the state was visited. This would mean to store
a nontrivial amount of information because each state might be a seed, in which
case the space complexity of the additional storage may turn out to be quadratic
with respect to the number of states. This is the reason why we do not allow to
run more nested DFS procedures simultaneously.

Another problem is the following. The original distributed version of SPIN
from [LS99] does not preserve the depth-�rst-search order of visited nodes. This
is not a problem in the case of reachability analysis because the only relevant
information is whether a given state was visited or not. However, this may pose
a threat to the correctness of the full model checking procedure which is shown
on the following example:

?>=<89:;76540123A
1 // ?>=<89:;B

2 // ?>=<89:;76540123C
3 // ?>=<89:;D

4

yy

A correct run through this graph (when DFS procedure goes back we use a
dashed edge, runs of nested DFS are put into brackets), in which the cycle
through C is detected, is:

1; 2; 3; 4; 4; 3; [3; 4; 2; Æ]C

4

An incorrect run, in which the correct order of seeds is not preserved, is for
instance

1; 2; 3; 4; 4; 3; 2; 1; [1; 2; 3; 4; 4; 3; 2; 1]A; [3:3]C

A possible solution to this problem was proposed in [LS99]. It is based on
the original distributed SPIN procedure for reachability analysis and consists
of adding synchronisation to the distributed algorithm. The synchronisation is
done by sending suitable acknowledgements that will exclude the possibility of a
seed being processed before another seed that is \below" thus avoiding incorrect
runs where cycles may not be detected. This solution cuts o� any parallelism
and so in fact does not perform better than the plain sequential algorithm.

What we propose here is an attempt to provide a more subtle solution that
makes it possible to e�ectively tackle larger tasks than standard SPIN within
reasonable space limits. The idea is to reduce the necessary synchronisation by
using additional data structures with limited space requirements.

Yet another important issue that must be taken into consideration is that
a distributed version of SPIN and hence our extension is based on the original
(sequential) SPIN and it should not exclude the use of the other main memory
and complexity reduction techniques available in SPIN, such as state compres-
sion, partial order reduction, and bit state hashing. The approach we consider
here is compatible with such mechanisms as much as possible.

4 Distributed Model-Checking Algorithm

From the discussion in the previous section it is clear that it is crucial to take
care about the order in which individual nested DFS procedures are performed.
We need to make sure that the following invariant will always hold for each
distributed computation:

A nested DFS procedure is allowed to begin from a seed S if and only if
all seeds below S have already been tested for cycle detection.

Di�erent states, hence also seeds, of the state space are processed on di�erent
nodes in accordance with the partition function. Hence, it may occur that for
a seed S, a computation of the subgraph generated by S is interrupted and
continues on a di�erent node. We need to keep track of such situations.

In order to represent dependencies between states (corresponding to compu-
tations transferred to other nodes) we shall build a dynamic structure that will
keep this necessary information. We need to remember the states which caused
the computation to be transferred to other nodes and we call them transfer
states. Two border states are involved in the transfer of computation and we
need to remember only one of them. A border state of node m is a state belong-
ing to the node m whose incoming or outgoing edge crosses to another node.
We shall also include all the seeds that appear during the computation in or-
der to ensure the correct order of performed nested DFS procedures. Each node
maintains its own structure and we call it DepS (Dependency Structure).

5

4.1 Dependency Structure

Dependency structure (DepS) for a node n is a graph whose vertices are either
seeds of the local state space of the node n or the transfer states for the node n.
Vertices can be indexed by a set of node names. A transfer state for a node n is
either the border state of node n whose predecessor is a border state of another
node or a border state of another node whose predecessor is the border state
of node n (see Figure 1 for a graphical explanation). The starting state of the
entire state space is also a vertex in the DepS for the node running manager
process. Note that a seed (or the starting state) can be a transfer state. In this
case it will occur only once in the structure (as a seed and and a transfer state
at the same time). Indexes in vertices corresponding to transfer states represent
the nodes from which the computation was transferred to the transfer state.

L K
J
I
H
G

E
C

A

>
=

?>=<89:;S

 A
AA

A

����
��
��
��
��

S is starting state

?>=<89:;X

%%KK
KKK

K X is transfer state for node II and I

?>=<89:;76540123A

!!C
CC

CC
CC

CC
C

?>=<89:;76540123B

zzttt
tt
tt
tt
tt
t

A is seed and transfer state for node I and II

Node I B is seed

Node II ?>=<89:;C

II�����������
C is transfer state for node I and II

Fig. 1. Transfer States and Seeds

The edges in the DepS for a node n represent the reachability relation between
states (and provide the crucial information to perform nested DFS procedures
in a \correct order"). The dependency structure is a forest-like structure and
is built dynamically during the computation of the DFS procedure. All vertices
in the structure are the states actually visited by the algorithm during depth-
�rst search. For each vertex its immediate successors contain the states (seeds
or transfer states) which the vertex is \waiting for", in the sense that the states
must be processed (checked for nested DFS in case of seeds) before the state
corresponding to the vertex can be processed.

The structure DepS is changing dynamically as the computation continues.
Whenever DFS procedure comes to a not yet visited seed or a transfer state a
new vertex corresponding to the state is added to the structure as an immediate
successor of the last visited state which is present in the structure. Moreover, in
the case of a transfer state a request to continue with DFS procedure is sent to
the node of the transfer state (if not already sent before).

During the computation each node receives requests from other nodes to
continue a walk through the state space. These requests are remembered in

6

a local queue of pending requests and the queue is processed in the standard
FIFO manner. For each request it is �rst checked whether the state is in the set
of visited states. If it is, then it is checked whether there is any vertex in the
(local) DepS structure containing the same state. If yes, then the \name" of the
node who sent the request is added to its index. If the request is not in the DepS
structure and it is in the set of visited states, then an acknowledgement of the
request is sent back. If the request is not in the set of visited states (hence not
in DepS) a new root vertex is added to DepS with the \name" of sending node
as its index.

B
?

<
9
6

4

2

?>=<89:;S

!!B
BB

B
~~|||
|

I I : S //

''NN
NNN

N X

�

}}{{
{{

�

��

BfII;IIIg
// V

II ?>=<89:;X

����
��

��

�

��
YfIIIg

�

��0
00
00
00
0

?>=<89:;76540123B

��

?>=<89:;Y II : XfIg
// B

� // �

66mmmmmmmm e _ Y

~
z

v
s

pmk

ZfIIIg

77ppppp

?>=<89:;Z

OO

�

��~~
~~

FF

 ?>=<89:;Voo // �

OO

III : VfIg

��>
>>

>>
>>

>>
//

&&MM
MMM

M Y

?>=<89:;76540123C

``AAAA
III C // Z

B

Fig. 2. Example of dependency structures

Removing a vertex from the dependency structure is possible only when
DFS procedure went up through the state already. The removing procedure �rst
checks whether the state associated with the vertex is a seed, in which case the
state is added to the global queue of seeds waiting for nested DFS procedure. For
any state all acknowledgements are generated according to the (vertex's) index.
Then the vertex is removed from the structure. Removing any vertex may make
its parents' successor list empty and so cause also removing of the parent and
parent's parent and so on.

Whenever the DFS procedure goes up through a state with a vertex in DepS,
it is checked whether the vertex is a leaf of the tree. If it is the case the removing
procedure is initiated. Removing procedure can also be initiated by incoming
acknowledgements.

In the Figure 2 the dependency structures for nodes I, II and III are shown
before any vertex has been removed.

7

4.2 Manager process

Distributed SPIN uses a manager process that starts the veri�cation program
on a predetermined set of network nodes. After it has detected termination,
the manager process stops the program, and collects the results. In our version
of distributed SPIN we will in addition require that the manager process is in
charge of initiating the nested DFS procedures in accordance with the method
described in previous sections.

All nodes involved in the computation communicate with the manager pro-
cess by sending information about their status. The status of each node is de-
termined by: DFS status, nDFS status, numbers of sent and received requests
(DFS and nDFS packets). The DFS status can be busy, idle-empty-DepS and
idle-nonempty-DepS. The nDFS status can be only busy or idle. In this way, the
manager process has a local representation of the current state of all the nodes.

Nested DFS procedures

As we have mentioned before, our approach relies on the requirement that only
one nested DFS procedure is allowed at a time. This is the reason for sending
the seed to the manager process instead of starting the nested DFS procedure
immediately during the DFS procedure. The manager process maintains global
queue of seeds waiting for their nested DFS procedures. It starts a nested DFS
procedure for the �rst seed in the queue only if no other nested DFS procedure
is running. The seed is removed from the queue after the manager process has
started the nested DFS procedure for it. The information necessary to decide
on starting a new nested DFS procedure can be obtained in the same way as
described in [LS99], that is by checking the nDFS status of all nodes to be equal
to idle and checking that the overall number of all nDFS packets sent equals the
overall number of all nDFS packets received.

Termination detection

The distributed algorithm must terminate when there is no waiting seed in the
global queue, no nested DFS procedure is running, the overall numbers of sent
and received DFS packets are equal, and all nodes have an idle-empty-DepS DFS
status.

Termination detection can be handled in a similar way as it is done by dis-
tributed SPIN. The only exception is the situation when the overall numbers of
sent and received DFS packets are equal, no computer has the busy DFS sta-
tus, but some node has the idle-nonempty-DepS DFS status. In this case the
manager process asks all the nodes with the idle-nonempty-DepS DFS status
for some information about their DepS structures. The nodes reply by sending
the following elements of their DepS structure: XZ

u
! Y , where X is a node

from the DepS structure which has a nonempty index Z, and Y is the node
representing the transfer state for which X is waiting. The edge has a label u
that represents the presence of a seed on the path from X to Y , including X and

8

excluding Y , in the original DepS structure. So u can be either 1 = with a seed

or 0 = without a seed. After receiving all the elements, the manager process
builds a temporary graph from incoming elements. After that it �nds the max-
imal strongly connected component in the graph which has no outgoing edges
using standard Tarjan's algorithm [Tar72]. Note, that such a strongly connected
component must exist. The manager process checks for the presence of an edge
with label 1 in the strongly connected component. If there is no such edge then
an acknowledgement is generated for an arbitrary node from the found compo-
nent. After the acknowledgement is sent out to the appropriate node, the whole
graph is forgotten and the distributed computation continues in the standard
way. In the other case, i.e. when there is a cycle labelled by 1 in the temporary
graph, it is clear that a cycle through an accepting state must exist in the origi-
nal state space and therefore the veri�ed property does not hold. In this case the
algorithm terminates immediately. The whole situation is shown in the Figure 3.

B

?

=

:

8

6

4

?>=<89:;S

����
��
��
��
��
�

��:
::

::
::

::
::

I I : S //

##H
HH

HH A

BfIIg
// C

?>=<89:;76540123A

��:
::

::
::

::
::

?>=<89:;76540123B

��

II : AfIg
// B

CfIg

;;vvvvv

II ?>=<89:;C

LL

Elements sent to manager process are: BfIIg
1

! C;AfIg
1

! B;CfIg
0

! B

Constructed graph is: AfIg
1 // BfIIg

1 ++
CfIg

0

ll

The strongly connected component without outcoming edges is: BfIIg

1 ++
CfIg

0

ll

A cycle through an accepting state has been found.

Fig. 3. Example

4.3 The Algorithm

Our algorithm extends the distributed algorithm from [LS99] and it uses the
same distributed method for reachability analysis. This ensures that we do not
exclude the use of the main memory and complexity reduction techniques avail-
able in SPIN.

9

The underlying idea of our distributed model-checking algorithm is the fol-
lowing. The whole reachable graph is partitioned into as many regions as the
number of network nodes. Each node performs the computation on the states
belonging to its own region. When a successor belonging to another region is
generated, a message containing the new state is sent to its owner. Received
messages are stored in a (remote) queue and processed sequentially. For both the
DFS and the nested DFS procedures, only the yet unvisited states are explored.
In contrast with the original algorithm, not all visited states are permanently
stored in the set of visited states, only the transfer states and seeds. Each node
keeps the set of permanently stored states in the array PV[i]. To prevent cy-
cling through not permanently stored states, the algorithm keeps the track of
all visited states within the processing of each received request. This temporary
set is kept in the array V[i], which is initialised to ; before processing another
request (state) from the queue of pending requests U[i].

To ensure the right order of nested DFS procedure calls, an additional data
structure DepS is maintained (see subsection 4.1). This structure is built by
procedures CREATE IN DepS(s) and ADD TO DepS(s1,s2), using a temporary
pointer Last visited. A root vertex in the dependency structure, which cor-
responds to a state s, is created by procedure CREATE IN DepS(s). Procedure
ADD TO DepS(s1,s2) creates a vertex corresponding to the state s2, if it does
not exist yet, and adds an edge between the vertices corresponding to the states
s1 and s2. A vertex representing the state s, written as hs in DepSi in the
pseudo-code, is composed of several components (�elds): parent, successors, state,
DFS gone and index. The �eld parent points to the vertex for which this vertex
has been created as a successor. The �eld index is a set of node names. The �eld
DFS gone is a
ag indicating whether the DFS procedure has already walked
through the state up. The meaning of the �elds successors and state is obvious.

Some additional local variables are used in the algorithm. The meaning of
Seed, state, came from and tmp is obvious. The variable toplevel is used
to distinguish whether the procedure DFV was called recursively from DFV or
whether it was called from the VISIT procedure. The variable Seed queue is a
global variable which is maintained by the MANAGER PROCESS. It represents the
queue of seeds waiting for their nested DFS procedures to be started.

All nodes execute the same code. For simplicity we assume that the master
node runs the manager process only. The DFS procedure is started by calling
procedure START(i,starting state). The value of i is the name of the node
(integer). The procedure puts the starting state into the queue of pending
requests U[i] at the proper node i. The procedure VISIT(i) is called for all
nodes except the master node at the end. The MANAGER PROCESS procedure is
called at the master node. The task of the MANAGER PROCESS procedure was
explained in the subsection 4.2.

The PROCESS INCOMING PACKETS procedure is actually a boolean function
which returns false if the computation should be stopped for some reason,
and returns true otherwise. This function plays the role of the client side of the
manager process. It updates the numbers of locally received and sent packets and

10

sends this numbers and the information about the node status to the manager
process. It also processes all incoming packets. The requests are stored in the
U[i] queue, the acknowledgements are collected and the REMOVE procedure is
called for them. Also all control packets are handled by it.

Procedure VISIT waits for the queue U[i] to be nonempty. It collects a
request from the queue, and resets the variables toplevel and V[i]. In case that
the request is a new one (it is not in the PV[i] set), the procedure DFV is called.
It is necessary to distinguish between the �rst DFS procedure and the nested
DFS procedure. In the case of nested DFS procedure the variable Seed must be
set, on the other hand in the case of DFS procedure appropriate actions on the
DepS structure are performed. The states already processed, which are requested
again, are checked for presence in the DepS structure. If the corresponding vertex
exists, only its index is updated, otherwise the acknowledgement is generated.

The DFV procedure checks whether the state belongs to the same node. If
not, the message containing the state is sent to the node owning the state and
the DepS structure is updated. (Note: In the case of nested DFS procedure the
seed, for which the nested search is running, is included in the message as well.)
When the DFV procedure is called from the VISIT procedure, a new root vertex
must be added to the DepS structure, and the state must be stored in the set of
permanently visited states PV[i]. In case that state is a seed it is necessary to
update the DepS structure. Note that the DepS structure is maintained only for
the �rst DFS procedure and not for the nested DFS procedure. Conversely, the
check whether the reached state is Seed is done only in the nested DFS proce-
dure. The CYCLE FOUND procedure informs the manager process about the fact
that a cycle has been found. Before all the successors of state are generated,
state is added to the set of actually visited states (V[i]). The unvisited succes-
sors are handled by recursive calling of procedure DFV. If a successor is a seed or
a transfer state which is already contained in the DepS structure (hence it must
appear in PV[i]), the appropriate edge is added to the DepS structure. After
all successors of state have been processed and if state is a seed, the check
whether there are any more successors of the corresponding vertex in the DepS

structure is performed. In case there are no successors, the vertex is removed
from DepS by procedure REMOVE.

Procedure REMOVE(vertex) is crucial with respect to maintaining the DepS

structure. It is responsible not only for (recursive) deleting of the vertices from
the memory but also for sending the seeds to the global queue (Seed queue),
and for sending all appropriate acknowledgements, which is done by procedure
ACK(vertex) (see the pseudo{code for details).

Note that the same state can be visited twice, in the DFS procedure and in
the nested DFS procedure. To store the information about the fact that the state
has or has not been visited in one or both DFS procedures only one additional
bit is required (see [Hol91]). We assume that this one additional bit is included
in the bit vector representing the state. That is why the bit vectors representing
the same state di�er in the case of DFS procedure and nested DFS procedure.

11

The Partition function is used for the partitioning of state space. The choice
of a \good" partition function is crucial in the distributed algorithm since a
\bad" partition of states among the nodes may cause communication overhead.
This issue was addressed in [LS99], where several partition functions were pro-
posed and tested.

The pseudo-code of our proposed algorithm follows:

procedure START(i,start_state)

begin

DepS := {};

U[i] := {};

PV[i] := {};

Last_visited := nil;

Seed := nil;

if (i = Partition(start_state)) then

begin

U[i] := U[i] + {start_state};

end;

if (i = 0) then

begin

MANAGER_PROCESS();

end

else

begin

VISIT(i);

end;

end.

procedure VISIT(i)

begin

while (PROCESS_INCOMING_PACKETS()) do

begin

if (U[i] <> {}) then

begin

get (state, came_from) from U[i];

toplevel := true;

V[i] := {};

if (state not in PV[i])) then

begin

if (Nested(state)) then

begin

Seed := state.seed;

DFV(i,state);

end

else

begin

DFV(i,state);

if (<state in DepS>.successors = {}) then

begin

12

REMOVE(<state in DepS>);

end;

end;

end

else

begin

if (state in DepS) then

begin

<state in DepS>.index := <state in DepS>.index

+ {came_from};

end

else

begin

ACK(<state in DepS>);

end;

end;

end;

end;

end.

procedure REMOVE(vertex)

begin

if Accepting(vertex.state) then

begin

Seed_queue := Seed_queue + {vertex.state};

end;

ACK(vertex);

tmp := vertex.predecessors;

for (i in tmp) do

begin

i.successors := i.successors - {vertex};

end;

free(vertex);

for (i in tmp) do

begin

if ((i.successors = {}) and (i <> nil)

and (i.DFS_gone)) then

begin

REMOVE(i);

end;

end;

end.

procedure DFV(i,state)

begin

if (PARTITION(state) <> i) then

begin

U[PARTITION(state)] := U[PARTITION(state)] + {state};

if (not Nested(state)) then

begin

13

ADD_TO_DepS (Last_visited, state);

end;

return;

end;

if (toplevel) then

begin

PV[i] := PV[i] + state;

if (not Nested(state)) then

begin

CREATE_IN_DepS(state);

Last_visited := state;

end;

end;

if (Accepting(state)) then

begin

if (not(toplevel) and (not Nested(state))) then

begin

ADD_TO_DepS(Last_visited,state);

Last_visited := state;

PV[i] := PV[i] + state;

end;

end;

toplevel := false;

V[i] := V[i] + {state};

for (newstate in successors of state) do

begin

if (Nested(state) and (Seed=newstate)) then

begin

CYCLE_FOUND();

end;

if (newstate not in (V + DepS + PV[i])) then

begin

DFV(i,newstate);

end

else

begin

if ((newstate in DepS) and (not in 1stDFS stack)) then

begin

ADD_TO_DepS (Last_visited,newstate);

end;

end;

if (Accepting(state) and (not Nested(state))) then

begin

Last_visited := <Last_visited in DepS>.parent;

<state in DepS>.DFS_gone := true;

if (<state in DepS>.successors = {}) then

begin

REMOVE(<state in DepS>);

end;

end;

14

end;

end.

5 Complexity and e�ectiveness

We shall try to estimate the overall size of the dependency structures constructed
during the distributed computations. For any node, there are two kinds of states
stored in the structure { all seeds that are visited by this node, and all states
that arise in the computation but are transferred to another node in accordance
with the partition function (transfer states). The number of the latter is crucial
because this can be in the worst case quadratic wrt the overall number of states.

The partition function we employ was originally proposed in [LS99] where
it was also shown that with this function, the fraction of transfer states in the
global state space is at most 2

P
, where P is the number of processes. The number

of transfer states T is bounded by the expression S �R, where S is the number
of states and R is the maximum of out-going degrees over all states. R is at
most P � ND, where ND is the maximal number of nondeterministic choices
of a process. Thus we get that T � (S � P �ND) and the average number of
transfer states is 2

P
� S � P �ND = 2S �ND. Hence, the number of states

stored in the dynamic structure is on average S + 2(2S � ND) which works
out to be O(S � ND). In most real systems the amount of non-determinism
(represented by ND) is limited and small. We may conclude that the memory
complexity of the distributed algorithm is on average linear in the size of the
state space and the factor given by non-determinism.

We will compare our approach with the simple method of synchronisation
proposed in [LS99]. We will look in detail at how the �rst and nested depth-
�rst-search procedures work. The �rst DFS searches through the state space and
marks accepting states (seeds) with a particular kind of
ag. The computation
of �rst DFS is completely asynchronous and never stops before the whole state
space is searched trough. The nested DFS searches in a similar, i.e. distributed,
way the subgraph rooted in the currently processed seed. If there are seeds
ready to be processed, the nested DFS is running in parallel with the �rst DFS.
Therefore our method allows parallel computations which are almost disabled in
the simple synchronisation technique.

6 Conclusions and Future Research

We have proposed an extension to the existing distributed algorithm used in
the veri�cation checker SPIN which allows to model-check LTL formulas. This
problem was suggested in [LS99] and left unsolved. The method used is very
simple and requires some synchronisation between nodes.

The experimental version of the algorithm has been implemented and a series
of preliminary experiments has been performed on a cluster of nine 366 MHz
Pentium PC Linux workstations with 128 Mbytes of RAM each interconnected
with a fast 100Mbps Ethernet and using MPI library.

15

We have compared the performance of our algorithm with the standard se-
quential version of SPIN running on a single computer. Although the implemen-
tation of the Dependency structure was far from being optimal, we were able to
receive some promising results. Our results show, that it is possible to increase
the capability of SPIN to check LTL formulas in distributed manner. For testing
we have used some of the scalable problems from the SPIN distribution. The
experimental version was mainly used to get a fast feedback on the applicability
of the method. We intent to perform an extensive testing on a variety of di�erent
examples using the new and more sophisticated implementation currently under
development.

There are several problems we intent to consider in the future. First, we
have used MPI library to get a fast prototype implementation. However, the
overhead caused by this communication infrastructure is quite high and using
another communication infrastructure (like TCP/IP) will certainly lead to better
performance. Second, we have used the partition function based on the function
from distributed SPIN. Partition function plays crucial role and techniques par-
ticularly suited for model-checking LTL formulas should be investigated.

References

[AAC87] S. Aggarwal, R. Alonso, and C. Courcoubetis. Distributed reachabil-
ity analysis for protocol veri�cation environments. In P. Varaiya and
H. Kurzhanski, editors, Discrete Event Systems: Models and Applica-
tion, volume 103 of LNCIS, pages 40{56, Berlin, Germany, August 1987.
Springer-Verlag.

[BBS00] J. Barnat, L. Brim, and J. St�r��brn�a. Distributed LTL Model-Checking in
SPIN. Technical Report FI-MU-10/00, Masaryk Univeristy Brno, 2000.

[BDHGS00] S. Ben-David, T. Heyman, O. Grumberg, and A. Schuster. Scalable dis-
tributed on-the-
y symbolic model checking. In third International Confer-
ence on Formal methods in Computer-Aided Design (FMCAD'00), Austin,
Texas, November 2000.

[Dil96] David L. Dill. The mur� veri�cation system. In Conference on Computer-
Aided Veri�cation (CAV '96), Lecture Notes in Computer Science, pages
390{393. Springer-Verlag, July 1996.

[HGGS00] Tamir Heyman, Danny Geist, Orna Grumberg, and Assaf Schuster.
Achieving scalability in parallel reachability analysis of very large circuits.
In Orna Grumberg, editor, Computer Aided Veri�cation, 12th Interna-
tional Conference, volume 1855 of Lecture Notes in Computer Science,
pages 20{35. Springer-Verlag, June 2000.

[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, Englewood Cli�s, New Jersey, 1991.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279{295, May 1997. Special Issue: Formal
Methods in Software Practice.

[LS99] F. Lerda and R. Sisto. Distributed-memory model checking with spin. In
SPIN workshop, number 1680 in LNCS, Berlin, 1999. Springer.

[Tar72] Robert Tarjan. Depth �rst search and linear graph algorithms. SIAM
journal on computing, pages 146{160, Januar 1972.

16

[UD97] U.Stern and D. L. Dill. Parallelizing the mur' veri�er. In O. Grumberg, ed-
itor, Proceedings of Computer Aided Veri�cation (CAV '97), volume 1254
of LNCS, pages 256{267, Berlin, Germany, 1997. Springer.

[WL93] P. Wopler and D. Leroy. Reliable hashing without collision detection. In
Conference on Computer-Aided Veri�cation (CAV '93), Lecture Notes in
Computer Science, pages 59{70. Springer-Verlag, 1993.

17

