
Tutorial on FDR and its Applications

Philippa Broadfoot and Bill Roscoe

Oxford University Computing Laboratory

Wolfson Building, Parks Road

Oxford OX1 3QD, UK

fpb,awrg@comlab.ox.ac.uk

FDR[1] is a re�nement checker for the process algebra CSP [2, 4], based

on that language's well-established semantic models. FDR stands for Failures-

Divergences Re�nement, after the premier model. In common with many other

model checkers, it works by \determinising" (or normalising) a speci�cation and

enumerating states in the cartesian product of this and the implementation. Un-

like most, the speci�cation and implementation are written in the same language.

Under development by its creators, Formal Systems (a spin-o� of the Computing

Laboratory) since 1991, it now o�ers a range of state compression methods. On

current workstations it can work at up to 20M states/hour with only a small

degradation on moving to disc-based storage.

Adaptations of FDR have been, or are being made, to accommodate other

input notations such as UML, but in this tutorial we will concentrate on CSP.

We will give a brief introduction to the CSP input language, and demonstrate

FDR's use in modelling

{ Timed systems

{ Fault tolerance

{ Cryptographic protocols: FDR was, we believe, the �rst general-purpose

model checker to be used for these, and we will demonstrate the Casper

protocol-to-CSP compiler [3].

{ Information 
ow analysis

as well as discussing the techniques it uses for addressing the state explosion

problem.

FDR has been much used in industrial work in areas such as computer secu-

rity, safety-critical systems, communications networks and telecommunications.

References

1. Formal Systems. FDR web site:

http://www.formal.demon.co.uk/FDR2.html

2. C. A. R. Hoare. \Communicating Sequential Processes", Prentice Hall (1985).

3. Gavin Lowe. Casper web site:

http://www.mcs.le.ac.uk/~gl7/Security/Casper/

4. A. W. Roscoe. \The Theory and Practice of Concurrency", Prentice Hall (1998).


