
Model-Checking Multi-Threaded Distributed

Java Programs
?

Scott D. Stoller

Computer Science Dept., Indiana University, Bloomington, IN 47405-7104 USA

Abstract. Systematic state-space exploration is a powerful technique

for veri�cation of concurrent software systems. Most work in this area

deals with manually-constructed models of those systems. We propose

a framework for applying state-space exploration to multi-threaded dis-

tributed systems written in standard programming languages. It general-

izes Godefroid's work on VeriSoft, which does not handle multi-threaded

systems, and Bruening's work on ExitBlockRW, which does not handle

distributed (multi-process) systems. Unlike ExitBlockRW, our search al-

gorithms incorporate powerful partial-order methods, guarantee detec-

tion of deadlocks, and guarantee detection of violations of the locking

discipline used to avoid race conditions in accesses to shared variables.

1 Introduction

Systematic state-space exploration (model-checking) is a powerful technique for

veri�cation of concurrent software systems. Most work in this area actually deals

with manually-constructed models (abstractions) of those systems. The models

are described using restricted languages, not general-purpose programming lan-

guages. Use of restricted modeling languages can greatly facilitate analysis and

veri�cation, leading to strong guarantees about the properties of the model.

However, use of such models has two potentially signi�cant disadvantages: �rst,

the e�ort needed to construct the model (in addition to the actual implemen-

tation of the system), and second, possible discrepancies between the behavior

of the model and the behavior of the original system. One approach to avoiding

these disadvantages is automatic translation of general-purpose programming

languages into modeling languages, as in [STMD96,HS99,DIS99,CDH+00]. This

facilitates applying abstractions, but automatic translation that handles all lan-

guage features (including dynamic memory allocation) and standard libraries

and yields tractable models is very di�cult.

Another approach is to apply state-space exploration directly to software

written in general-purpose programming languages, such as C++ or Java. This

approach is used in VeriSoft [God97,GHJ98]. Capturing and storing the state

of a program written in a general-purpose programming language is di�cult, so

VeriSoft uses state-less search; this means that the search algorithm does not

? The author gratefully acknowledges the support of ONR under Grant N00014-

99-1-0358 and the support of NSF under CAREER Award CCR-9876058. Email:

stoller@cs.indiana.edu Web: http://www.cs.indiana.edu/~stoller/

require storage of previously-visited states. State-less search might visit a state

multiple times. VeriSoft uses partial-order methods|speci�cally, persistent sets

and sleep sets (see Section 3) to reduce this redundancy. VeriSoft is targeted at

\distributed" systems, speci�cally, systems containing multiple single-threaded

processes that do not share memory. Processes interact via communication ob-

jects, such as semaphores or sockets.

ExitBlock [Bru99] is based on similar ideas as VeriSoft but targets a di�erent

class of systems. ExitBlock can test a single multi-threaded Java process that

uses locks to avoid race conditions in accesses to variables shared by multiple

threads. Speci�cally, ExitBlock assumes that the process satis�es the mutual-

exclusion locking discipline (MLD) of Savage et al. [SBN+97]. ExitBlock exploits

this assumption to reduce the number of explored interleavings of transitions of

di�erent threads. Bruening shows that if a system satis�es MLD, then for the

purpose of determining reachability of control points and deadlocks, it su�ces to

consider schedules in which context switches between threads occur only when a

lock is released, including the implicit release performed by Java's wait operation.

This paper combines the ideas in VeriSoft and ExitBlock and extends them

in several ways. Our framework targets systems of multi-threaded processes that

interact via communication objects and use locks to avoid race conditions in ac-

cesses to shared variables. Thus, it handles a strict superset of the systems han-

dled by VeriSoft or ExitBlock. Related work is discussed further in Section 11.

Our results fall into two categories: results in Sections 4{8 for systems known

to satisfy MLD, and results in Section 9 for systems expected to satisfy MLD.

Static analyses like Extended Static Checking [DLNS98], types for safe locking

[FA99], and protected variable analysis [Cor00] can conservatively check whether

a system satis�es MLD. If it does, MLD constrains the set of objects that may be

accessed by a transition (based on the set of locks held by the thread performing

the transition), and this information can be used to constrain dependency be-

tween transitions and thereby to compute smaller persistent sets. In the absence

of such guarantees, MLD can be checked dynamically during the selective search,

using a variant of the lockset algorithm [SBN+97]. Since MLD is expected to

hold, we propose to still exploit MLD when computing persistent sets. This in-

troduces a potentially dangerous circularity. If a transition t that violates MLD

is incorrectly assumed to be independent of other transitions, this error might

cause the persistent-set algorithm to return a set that is too small (e.g., does

not include t) and is not actually persistent. Since the explored set of transitions

is not persistent, there is a priori no guarantee that the selective search will

actually �nd a violation of MLD. Bruening does not address this issue. We show

that this can happen with MLD but not with a slightly stricter variant MLD0.

2 System Model

We adopt Godefroid's model of concurrent systems [God96], except that we call

the concurrent entities threads rather than processes, disallow transitions that

a�ect the control state of multiple threads, and divide objects into three cate-

gories. A concurrent system is a tuple h�;O; T ; sinit ;Ounsh ;Osyn ;Omtx i, where

� is a �nite set of threads. A thread is a �nite set of elements called control

points. Threads are pairwise disjoint.

O is a �nite set of objects. An object is characterized by a pair hDom;Opi,

where Dom is the set of possible values of the object, and Op is the set of

operations that can be performed on the object. An operation is a partial

function that takes an input value and the current value of the object and

returns a return value and an updated value for the object.

T is a �nite set of transitions. A transition t is a tuple hS;G;C; F i, where: S is

a control point of some thread, which we denote by thread(t); F is a control

point of the same thread; G is a guard, i.e., a boolean-valued expression built

from read-only operations on objects and mathematical functions; and C is

a command, i.e., a sequence of expressions built from operations on objects

and mathematical functions. We call S and F the starting and �nal control

points of t.

sinit is the initial state. State is de�ned below.

Ounsh � O is the set of unshared objects, i.e., objects accessed by at most one

thread.

Osyn � O is the set of synchronization objects, de�ned in Section 2.1.

Omtx � O is the set of objects for which MLD, de�ned in Section 2.2, is used.

A state is a pair hL; V i, where L is a collection of control points, one from

each thread, and V is a collection of values, one for each object. For a state s

and object o, we abuse notation and write s(o) to denote the value of o in s.

Similarly, we write s(�) to denote the control point of thread � in state s.

A transition hS;G;C; F i of thread � is pending in state s if S = s(�), and

it is enabled in state s if it is pending in s and G evaluates to true in s. For a

concurrent system A, let pending
A
(s; �) and enabledA(s; �) denote the sets of

transitions of � that are pending and enabled, respectively, in state s (in system

A). Let enabledA(s) denote the set of transitions enabled in state s. When the

system being discussed is clear from context, we elide the subscript. If a transition

hS;G;C; F i is enabled in state s = hL; V i, then it can be executed in s, leading

to the state h(LnfSg)[fFg; C(V)i, where C(V) represents the values obtained

by using the operations in C to update the values in V . s
t
! s

0 means that

transition t is enabled in state s and that executing t in s leads to state s0.

A sequence is a function whose domain is the natural numbers or a �nite

pre�x of the natural numbers. Let j�j denote the length of a sequence �. Let

�(i::j) denote the subsequence of � from index i to index j. Let last(�) denote

�(j�j � 1). Let ha0; a1; : : :i denote a sequence containing the indicated elements;

hi denotes the empty sequence. Let �1 ��2 denote the concatenation of sequences

�1 and �2.

An execution of a concurrent system A is a �nite or in�nite sequence � of

transitions of A such that there exist states s0; s1; s2; : : : such that s0
�(0)
! s1

�(1)
!

s2 � � � and s0 = sinit . Operations are deterministic, so the sequence of states

s1; s2; : : : is completely determined by the sequence of transitions and sinit . When

convenient, we regard that sequence of states as part of the execution. A state

is reachable (in a system) if it appears in some execution (of that system). A

control point is reachable if it appears in some reachable state.

Objects in O n (Ounsh [Osyn [Omtx) are called communication objects. For

example, a system containing Java processes communicating over a socket in-

volves some instances of java.net.Socket, which are in Omtx , and an underlying

socket, which is a communication object.

2.1 Synchronization Objects

We plan to apply our framework to model-checking of Java programs, so we fo-

cus on the built-in synchronization operations in Java. In our framework, a syn-

chronization object embodies the synchronization-related state that the JVM

maintains for each Java object or class. (Java does not contain distinct syn-

chronization objects; every Java object contains its own synchronization-related

state. This di�erence is inconsequential.)

The �elds of a synchronization object are: owner (name of a thread, or free),

depth (number of unmatched acquire operations), and wait (list of waiting

threads). We assume that the lock associated with each synchronization object

is free in the initial state. The \operations" on synchronization objects are: ac-

quire, release, wait, notify, and notifyAll. Each of these high-level \operations"

is represented in a straightforward way as one or more transitions that use mul-

tiple (lower-level) operations on the synchronization object. For concreteness,

we describe one such representation here. Other encodings are possible.

Thread � acquiring o's lock corresponds to a transition with guard o:owner 2

ffree; �g and command o:owner := �; o:depth++. Thread � releasing o's lock

corresponds to two transitions: one with guard contains o:owner 6= � and a

command that throws an IllegalMonitorStateException, and one with guard

o:owner = � and command o:owner := (o:depth = 1) ? free : �; o:depth��.1

Let tmpDepth denote an unshared natural-number-valued object used by

�. Thread � waiting on o corresponds to three transitions: one with guard

o:owner 6= � and a command that throws an IllegalMonitorStateException,

and one with guard o:owner = � and command o:wait :add (�); tmpDepth =

o:depth ; o:depth := 0; o:owner := free followed by one with guard o:owner =

free ^ � 62 o:wait and command o:owner := �; o:depth := tmpDepth . Thread �

doing notify on o corresponds to two transitions: one with guard o:owner 6= � and

a command that throws an IllegalMonitorStateException, and one with guard

o:owner = � and command o:waitRemove(), which removes an arbitrary element

of the set. notifyAll is similar, except that Remove is replaced with RemoveAll.

We informally refer to acquire, release, etc., as operations on synchroniza-

tion objects, when we actually mean the operations used by the corresponding

transitions. An important observation is:

1 The de�nition of command does not allow conditionals. The �rst assignment state-

ment in this command is syntactic sugar for o:ownerRelease(o:depth ; �), which is an

operation that has exactly the same e�ect as the assignment statement.

SyncWithoutLock: If a thread � executes an operation op other than acquire

on a synchronization object o in a state s in which � does not hold o's lock,

then (1) execution of op in s does not modify the state of o, and (2) execution

of op in s has the same e�ect (e.g., it throws IllegalMonitorStateException)

regardless of other aspects of o's state (e.g., regardless of whether o's lock

is held by another thread or free, and regardless of whether any threads are

blocked waiting on o).

One might hope that synchronization objects could be included in Omtx

and not treated specially in the proofs below. Special consideration is needed

for operations on synchronization objects, because they access o:owner in a

way that violates MLD. Classifying synchronization objects as communication

objects would mean that all operations on them are visible, which would increase

the cost of the selective search.

Our results are sensitive to the operations on synchronization objects. For

example, consider introducing a non-blocking operation Free? that returns true

i� the object's lock is free. This operation violates SyncWithoutLock and would

require that release be classi�ed as visible (see Section 2.3).

2.2 Mutex Locking Discipline (MLD)

The MLD of [SBN+97] allows objects to be initialized without locking. Ini-

tialization is assumed to be completed before the object becomes shared (i.e.,

accessed by two di�erent threads). The guard or command of a transition ac-

cesses object o if it contains an operation on o. Transition t accesses object

o in state s if (1) t is pending in s and t's guard accesses o or (2) t is en-

abled in s and t's command accesses o. Thread � accesses object o in state

s, denoted access(s; �; o), if there exists a transition in pending(s; �) that ac-

cesses o in s. startShared(�; o) is the index of the �rst state in � in which

an access to o that is not part of initialization of o occurs; formally, letting

� be s0
�(0)
! s1

�(1)
! s2 � � �, startShared(�; o) is the least value of i such that

(9i1; i2 � i : 9�1; �2 2 � : �1 6= �2 ^ access(si1 ; �1; o) ^ access(si2 ; �2; o)), or j�j if

no such values exist.

Mutex Locking Discipline (MLD): A system h�;O; T ; sinit ;Omtx ;Osyn i sat-

is�es MLD i� for all executions � = s0
�(0)
! s1

�(1)
! s2 � � � of the system, for

all objects o 2 Omtx ,
MLD-R: o is read-only after it becomes shared, i.e., there exists a constant

c such that for all i � startShared(�; o), si(o) = c.
MLD-L: o is properly locked after it becomes shared, i.e., there exists a

synchronization object o1 2 Osyn such that, for all i � startShared(�; o),

for all � 2 �, if access(si; �; o), then � owns o1's lock in si.

Godefroid [God96] de�nes: transition t uses object o i� t's guard or command

contains an operation on o. A use of o by the command of a disabled transition

cannot be detected by run-time monitoring, so we do not want the de�nition of

MLD to depend on such uses. This motivates our de�nition of \accesses".

2.3 Visible and Invisible

Operations are classi�ed into two categories: visible and invisible. Informally,

visible operations are points in the computation at which the scheduler takes

control and possibly causes a context switch between threads.

All operations on communication objects are visible, as in [God97]. The op-

erations on synchronization objects that may block are visible; thus, acquire

and wait (speci�cally, for wait, the operations in the transition that blocks, not

the operations in the other two transitions) are visible. All other operations are

invisible. A transition is visible if its command or guard contains a visible op-

eration; otherwise, it is invisible. A control point S is visible if all transitions

with starting control point S are visible; otherwise, it is invisible. A state s is

visible if all control points in s are visible; otherwise, it is invisible. Visible states

correspond to global states in [God97]. We de�ne some conditions on systems:

Separation: Visible and invisible transitions are \separated", i.e., for every

thread �, for every control point S 2 �, all transitions with starting control

point S are visible, or all of them are invisible.

Initial Control Locations are Visible (InitVis): For every thread �, sinit (�)

is visible.

Bound on Invisible Transition Sequences (BoundedInvis): There exists

a bound b on the length of contiguous sequences of invisible transitions by a

single thread. Thus, in every execution, for every thread �, every contiguous

sequence of b+1 transitions executed by � (ignoring interspersed transitions

of other threads) contains at least one visible transition.

Determinism of Invisible Control Points (DetermInvis): In every reach-

able state, for every thread �, � has at most one enabled invisible transition.

Non-Blocking Invisible Control Points (NonBlockInvis): For every thread

�, for every invisible control point S of �, for every reachable state s con-

taining S, enabled (s; �) 6= ;.

In a system satisfying DetermInvis, non-determinism may still come from two

sources: concurrency (i.e., di�erent interleavings of transitions) and visible tran-

sitions (e.g., VeriSoft's VS Toss operation [God97]).

A straightforward generalization (not considered further in this paper) is to

allow conditional invisibility (i.e., let operations be invisible in some states and

visible in others) and to classify an acquire operation by � as invisible in states

where owner = �.

3 State-less Selective Search

The material in this section is paraphrased from [God97]. Two techniques used

to make state-less search e�cient are persistent sets and sleep sets. Both attempt

to reduce the number of explored states and transitions. Persistent sets exploit

the static structure of the system, while sleep sets exploit information about

the history of the search. Informally, a set T of transitions enabled in a state

Global variables: stack, curState;

SSS() f
stack := empty;

curState := sinit ;

DFS(;);
g

DFS(sleep) f
T := PS(curState) n sleep;
while (T is not empty)

remove a transition t from T ;

push t onto stack;

curState := exec(curState ; t);

sleep 0 := ft0 2 sleep j ht; t0i 62 Dg;
DFS(sleep0)

pop t from stack;

curState := undo(curState ; t);

sleep := sleep [ftg;
g

Fig. 1. State-less Selective Search (SSS) using persistent sets and sleep sets.

s is persistent in s if, for every sequence of transitions starting from s and not

containing any transitions in T , all transitions in that sequence are independent

with all transitions in T .

Dependency Relation. Let T and State be the sets of transitions and states,

respectively, of a concurrent systemA.D � T �T is an unconditional dependency

relation for A i� D is re
exive and symmetric and for all t1; t2 2 T , ht1; t2i 62 D

(\t1 and t2 are independent") implies that for all states s 2 State, (1) if t1 2

enabled (s) and s
t1
! s

0, then t2 2 enabled (s) i� t2 2 enabled (s0) (independent

transitions neither disable nor enable each other), and (2) if ft1; t2g � enabled(s),

then there is a unique state s
0 such that s

t1
! s1

t2
! s

0 and s
t2
! s2

t1
! s

0.

(enabled independent transitions commute). D � T �T �State is a conditional

dependency relation for A i� for all t1; t2 2 T and all s 2 State, ht1; t2; si 62 D

(\t1 and t2 are independent in s") implies that ht2; t1; si 62 D and conditions

1 and 2 above hold. This de�nition of conditional dependency assumes that

commands of transitions satisfy the no-access-after-update restriction [God96,

p. 21]: an operation that modi�es the value of an object o cannot be followed by

any other operations on o.

Persistent Set. A set T � enabled (s) is persistent in s i�, for all nonempty

sequences of transitions � such that s0
�(0)
! s1

�(1)
! s2 � � �

�(n�1)
! sn

�(n)
! sn+1,

if s0 = s and (8i 2 [0::n] : �(i) 62 T), then �(n) is independent in sn with all

transitions in T .

Godefroid's state-less selective search (SSS) using persistent sets and sleep

sets appears in Figure 1, where exec and undo are speci�ed by: if s
t
! s

0, then

exec(s; t) = s
0 and undo(s0; t) = s. PS(s) returns a set of transitions that is

persistent in s. D is an unconditional dependency relation. SSS diverges if the

state space contains cycles; in practice, divergence is avoided by limiting the

search depth.

Following Godefroid [God96] but deviating from standard usage, a deadlock

is a state s such that enabled (s) is empty. We focus on determining reachability

of deadlocks and control points. Reachability of control points can easily encode

information about values of objects. For example, a Java program might assert

that a condition e1 holds using the statement if (!e1) throw e2; violation of

this assertion corresponds to reachability of the control point at the beginning of

throw e2. If necessary (as in Section 5), assertion violations can easily be encoded

as reachability of visible control points, by introducing a communication object

with a single (visible) operation that is called when any assertion is violated.

Theorem 1. Let A be a concurrent system with a �nite and acyclic state space.

A deadlock d is reachable in A i� SSS explores d. A control point S is reachable

in A i� SSS explores a state containing S.

Proof: This is a paraphrase of Theorem 2 of [God97]. ut

4 Invisible-First Selective Search

Persistent sets can be used to justify not exploring all interleavings of invisible

transitions.

Theorem 2. Let A be a concurrent system satisfying MLD and Separation.

For all threads � and all reachable states s, if enabled (s; �) contains an invisible

transition, then enabled(s; �) is persistent in s.

Proof: Let � be a sequence of transitions as in the de�nition of persistent set. Let

t 2 enabled (s; �). Separation implies that t is invisible. It su�ces to show that

�(n) is independent in sn with t. First, we show that � does not contain tran-

sitions of thread(t); second, we show the desired independence. Roughly, MLD

implies that accesses to objects in Omtx do not cause dependence; invisibility of

t implies that accesses to communication objects do not cause dependence; and

SyncWithoutLock implies that accesses to synchronization objects do not cause

dependence. For details, see [Sto00]. ut

Suppose the system satis�es MLD, Separation, BoundedInvis, and DetermIn-

vis. If a thread � has an enabled invisible transition in a state s, then Separation

and DetermInvis imply that � has exactly one enabled transition in s. Theorem

2 implies that it is su�cient to explore only that transition from s. This can be

done repeatedly, until � has an enabled visible transition. BoundedInvis implies

that this iteration terminates. Let execInvisA(s; �) be the unique state obtained

by performing this procedure starting from state s; if � has no enabled invisible

transitions in state s, then we de�ne execInvisA(s; �) = s. Specializing SSS to

work in this way yields Invisible-First State-less Selective Search (IF-SSS), given

in Figure 2.

Theorem 3. Let A be a concurrent system with a �nite and acyclic state space

and satisfying MLD, Separation, BoundedInvis, and DetermInvis. A deadlock d

is reachable in A i� IF-SSS explores d. A control point S is reachable in A i�

IF-SSS explores a state containing S.

Proof: This follows from Theorems 1 and 2, and the fact that transitions in sleep

are independent with invisible transitions executed by execInvis (this follows

Global variables: stack, curState;

IF-SSS() f
stack := empty;

curState := sinit ;

DFSif(;);
g

DFSif (sleep) f
T := PS(curState) n sleep;
while (T is not empty)

remove a transition t from T ;

push t onto stack;

curState := exec(curState ; t);

curState := execInvisA(curState ; thread (t));

sleep0 := ft0 2 sleep j ht; t0i 62 Dg;
DFSif(sleep

0)

pop t from stack;

curState := undo(curState ; t);

sleep := sleep [ftg;
g

Fig. 2. Invisible-First State-less Selective Search (IF-SSS) using persistent sets and

sleep sets.

from Separation, DetermInvis, and Theorem 2), so it is safe not to explicitly

check that independence when computing sleep 0. For details, see [Sto00]. ut

5 Composing Transitions

In some cases, a stronger partial-order reduction can be obtained by amalga-

mating a visible transition and the subsequent sequence of invisible transitions

explored by IF-SSS into a single transition; an example appears in Section 6.

Transitions are amalgamated (composed) as follows. Given a sequence � of tran-

sitions, let cmd seq(�) be the sequential composition of the commands of the

transitions in �, and let guard seq(�) be the weakest predicate ensuring that

when each transition t in � is executed, t's guard holds. Let �nal(t) denote the

�nal control point of transition t.

Given a concurrent system A = h�;O; T ; sinit ;Ounsh ;Osyn ;Omtx i satisfying

MLD, Separation, BoundedInvis, and DetermInvis, C(A) is h�;O; T 0
; sinit ;Ounsh ;

Osyn ;Omtx i, where T
0 is as follows. Let b be the bound in BoundedInvis for

A. For each visible transition t = hS;G;C; F i in T , for each sequence � of

invisible transitions of length at most b such that guard seq(hti � �) 6= false and

�nal(last(�)) is visible, T 0 contains the transition hS; guard seq(hti��); cmd seq(hti�

�);�nal(last(�))i. Elements of T 0 are analogous to process transitions [God97].

Theorem 4. Let A be a concurrent system satisfying MLD, Separation, InitVis,

BoundedInvis, and DetermInvis. s is a reachable visible state of A i� s is a

reachable visible state of C(A).

Proof: A proof sketch follows; for details, see [Sto00].

((): Let s be a reachable visible state of C(A). Let � be an execution of C(A)

containing s. Expanding each transition in � into the sequence of transitions of

A from which it is composed yields an execution of A that contains s.

()): Let s be a reachable visible state of A. Let � be an execution of A

containing s. We re-arrange � as follows: for each thread �, move the invisible

transitions of � that appear between the i'th and (i+1)'th visible transitions of

� backwards so that those invisible transitions form a contiguous subsequence of

the re-arranged execution starting immediately after the i'th visible transition

of �. We use MLD and Theorem 2 to show that this can be achieved by inter-

changing independent transitions. From the re-arranged execution of A, we can

easily form an execution of C(A) containing s. ut

Theorem 5. Let A be a concurrent system with a �nite and acyclic state space

and satisfying MLD, Separation, InitVis, BoundedInvis, and DetermInvis. A

deadlock d is reachable in A i� SSS applied to C(A) explores d. A control point

S is reachable in A i� SSS applied to C(A) explores a state containing S.

Proof: This follows directly from Theorems 1 and 4 and the observation that

A and C(A) have the same set of reachable deadlocks, which follows from Non-

BlockInvis (which implies that all deadlocks of A are visible) and Theorem 4. ut

6 Comparison of Invisible-First and Composition

Sections 4 and 5 describe two approaches to achieving similar partial-order re-

ductions. The invisible-�rst approach (Section 4) is worthwhile for three reasons.

First, Theorem 2 shows that this reduction is a special case of persistent sets,

thereby showing the relationship to existing partial-order methods. Second, The-

orem 3 shows that, with IF-SSS, operations in invisible transitions do not need to

be recorded (because they do not introduce dependencies that would cause tran-

sitions to be removed from sleep sets); we are investigating whether an analogous

optimization is possible for SSS applied to C(A). Third, the guards of composed

transitions sometimes introduce dependencies that cause SSS applied to C(A)

to explore more interleavings than IF-SSS. For example, consider a thread �

that is ready to execute if (x1) f if (x2) c1 else c2 g else f if (x3) c3 else c4 g,

where xi 2 Omtx and the ci do not contain visible operations. Let S denote the

starting control point of this statement. In the original system A, � accesses only

x1 at S. In the composed system, � accesses x1, x2, and x3 at S, because the

composed transitions with starting control point S have guards like x1 ^ x2 and

x1 ^ :x3. In a state s with s(�) = S and s(x1) = false, the access by � to x3

in the composed system is an artifact of composition. Such accesses introduce

dependencies that could cause persistent sets to be larger in C(A) than A, if

the calculation of persistent sets|speci�cally, the calculation of pendInvisOps ,

de�ned in Section 8|exploits information from static analysis.

The composition approach (Section 5) is worthwhile because it sometimes

achieves a stronger partial-order reduction. For example, suppose two threads

are both ready to acquire the lock that protects a shared variable v, copy v's

value into an unshared variable, and then release the lock. In C(A), each thread

can do this with a single transition, and those two transitions are independent,

so SSS applied to C(A) could explore a single interleaving. In A, each thread does

this with a sequence of three transitions, and the transitions that manipulate the

lock are not independent, so IF-SSS applied to A explores multiple interleavings.

A more detailed example appears in [Sto00].

7 Computing Sleep Sets

Consider re�ning DFS (in Figure 1) to use a conditional dependency relation

when computing sleep 0; this can produce larger sleep sets and hence more ef-

�cient search. Dependency of t and t
0 should be evaluated in the state prior

to execution of t; thus, the line that computes sleep 0 should be moved imme-

diately above the line containing exec, and ht; t0i 62 D should be replaced with

ht; t0; curStatei 62 D. Theorem 1 holds for the modi�ed algorithm, provided the

transitions satisfy no-access-after-update. In VeriSoft [God97], this re�nement

works �ne, because only visible operations a�ect dependency (invisible opera-

tions are on unshared objects), and visible operations can only appear as the

�rst operation in a transition's command, so determining that visible operation

(by intercepting it) before the transition actually executes is straightforward.

Our framework does not impose those restrictions, so operations on shared

objects used by a transition t are not known until after t has been executed, so the

calculation of sleep 0 cannot easily be moved above the line containing exec. One

solution is to execute and undo t in order to determine its guard and command,

but this is expensive, because undo is expensive (especially if implemented using

reset+replay or checkpointing). A more e�cient approach is to observe that

conditional dependency typically depends only on a relatively small and well-

de�ned amount of information about the system's state; in such cases, we can

record that information and use it to evaluate sleep 0 after t is executed. For

example, for a transition that manipulates a FIFO queue, one might use the

conditional dependency relation in [God96, Section 3.4] and therefore record

two booleans indicating whether the queue is empty or full.

Dependency relations for transitions are typically derived in a modular way

from dependency relations for (the operations of) each object [God96, De�ni-

tions 3.15, 3.21]. For some types of objects, it might be di�cult or expensive to

record the parts of the state that a�ect conditional dependency. Also, conditional

dependency (as de�ned in [God96]) cannot be used for objects that are accessed

in a way that violates the no-access-after-update restriction. We simply use un-

conditional dependency for such objects; this is easy, because unconditional de-

pendency is a special case of conditional dependency. As an exception, we can

use conditional dependency for some transitions whose accesses to synchroniza-

tion objects violate the no-access-after-update restriction, e.g., transitions that

acquire and then release a lock, as in the example at the end of Section 5.

8 Computing Persistent Sets

Computing persistent sets requires information about the future transitions of

each thread. When model-checking standard languages, the exact set of transi-

tions is not known, so statically determined upper bounds on the set of opera-

tions that each thread may perform (ignoring operations on unshared objects)

are used to compute persistent sets. Let allowedOps(�) denote such an upper

bound for thread �. Let allowedInvisOps(�) be the set of invisible operations in

allowedOps(�). Let usedVisOps(t) be the set of visible operations used by t. We

assume that in each visible state s, for each thread �, the following set is known:

pendVisOps(s; �) =
[

t2pending(s;�)

usedVisOps(t) (1)

To compute small persistent sets, it is important to have information about

the set of invisible operations used by pending transitions of � in s. A non-trivial

upper bound pendInvisOps(s; �) on that set can be obtained by exploiting MLD.

For concreteness, we describe how to obtain such a bound based on the data

structures maintained by the lockset algorithm [SBN+97]. We assume in this

section that the system satis�es MLD; the lockset algorithm is used here only

to obtain information about which locks protect accesses to each object. If that

information is available from whatever static analysis was used to ensure that

MLD holds, then running the lockset algorithm during the search is unnecessary.

The lockset algorithm uses the following data structures. For each object o,

the following values are maintained: o:mode , which is virgin (allocated but unini-

tialized), exclusive (accessed by only one thread), shared (accessed by multiple

threads, but threads after the �rst did not modify the object), or shared-modi�ed

(none of the above conditions hold); o:�rstThread , which is the �rst thread that

accessed o (i.e., the thread that initializes o; o:�rstThread is unde�ned when o

is in virgin mode); and o:candLockSet (\candidate lock set"), which is the set of

locks that were held during all accesses to o after initialization (i.e., starting with

the access that changed o:mode from exclusive to shared or shared-modi�ed).

We assume that o:candLockSet contains all locks (i.e., equals Osyn) while o is in

exclusive mode. For each thread �, held (s; �), the set of synchronization objects

whose locks are held by � in state s, is maintained, in order to e�ciently update

candidate lock sets. acquiring(s; �) is the set of synchronization objects o such

that pendVisOps(s; �) contains an acquire operation on o.

pendInvisOps(s; �) =
[

o12held(s;�)[acquiring(s;�)

fo:op 2 allowedInvisOps(�) j MLDallows(s; �; o1; o)g

MLDallows(s; �; o1; o:op) =

_ o:mode = virgin ^mayInit(s; �; o)

_ o:mode = exclusive ^ (� = o:�rstThread _ rdOnly(op) _ o1 2 o:candLockSet)

_ o:mode = shared ^ (rdOnly(op) _ o1 2 o:candLockSet)

_ o:mode = shared-modi�ed ^ o1 2 o:candLockSet

where rdOnly(op) holds if op is read-only, and mayInit(s; �; o) holds if � can be

the �rst thread to access a virgin object o in state s. For example, in Java, for

non-static variables, one might require that � be the thread that allocated o (for

static variables of a class C, � is the thread that caused class C to be loaded).

For systems that satisfy the following stricter version of MLD-L, we can mod-

ify how o:candLockSet is computed in a way that can lead to smaller persistent

sets: in every execution in which o is shared, the same lock protects accesses to

o; formally, this corresponds to switching the order of the quanti�cations \for all

executions of A" and \there exists o1 2 Osyn". With this stricter requirement,

we can modify undo so that it does not undo changes to the candidate lock

set. This has the desired e�ect of possibly making o:candLockSet smaller (hence

possibly producing smaller persistent sets) without a�ecting whether a violation

of the requirement is reported.

Persistent sets can be computed using the following variant of Algorithm

2 of [God96], which is based on Overman's Algorithm. We call this Algorithm

2-MLD.

1. Select one transition t 2 enabled(s). Let T = fthread(t)g.

2. For each � 2 T , for each operation op 2 pendVisOps(s; �)[pendInvisOps(s; �),

for each thread �
0 2 � nT , if (9op 0 2 allowedOps(�0) : op .s op

0), then insert

�
0 in T .

3. Repeat step 2 until no more processes can be added. Return [�2T enabled (s; �).

Theorem 6. Let A be a concurrent system satisfying MLD. In every state s of

A, Algorithm 2-MLD returns a set that is persistent in s.

Proof: This follows from correctness of Algorithm 2 of [God96]. ut

9 Checking MLD During Selective Search

If the system is expected to satisfy MLD but no static guarantee is available,

MLD can be checked during the selective search using the lockset algorithm

[SBN+97]. As explained in Section 1, the results in Sections 4{8 do not directly

apply in this case, because they compute persistent sets assuming that the system

satis�es MLD. Here we extend those results to ensure that, if the system violates

a slightly stronger variant of MLD, then the selective search �nds a violation.

Savage et al. observe that their liberal treatment of initialization makes Eras-

er's checking undesirably dependent on the scheduler [SBN+97, p. 398]. For the

same reason, IF-SSS might indeed miss violations of MLD. Consider a system in

which �1 can perform the sequence of three transitions (control points are omit-

ted in this informal shorthand) hv := 0; sem:up(); v := 1i, and �2 can perform the

sequence of four transitions hsem :down(); o:acquire(); v := 2; o:release()i, where

v 2 Omtx is an integer variable, o 2 Osyn , and semaphore sem (a communication

object) is initially zero. This system violates MLD, because v := 1 can occur

after v := 2, and �1 holds no locks when it executes v := 1. IF-SSS does not �nd

a violation, because after sem :Up(), execInvis immediately executes v := 1.

We strengthen the constraints on initialization by requiring that the thread

(if any) that initializes each object be speci�ed in advance and by allowing

at most one initialization transition per object (a more
exible alternative is

to allow multiple initialization transitions per object, but to require that the

initializing thread not perform any visible operations between the �rst access

to o and the last access to o that is part of initialization of o). Formally, we

require that a partial function initThread from objects to threads be included

as part of the system, and we de�ne startShared 0(�; o) to be: if o is not in

the domain of initThread , then zero, otherwise the second smallest i such that

(9� 2 � : access(si; �; o)), where � is s0
�(0)
! s1

�(1)
! s2 � � �. Let MLD0 denote MLD

with startShared replaced with startShared 0, and extended with the requirement

that for each object o in the domain of initThread , initThread (o) is the �rst

thread to access o.2 The lockset algorithm can easily be modi�ed to check MLD0.

We assume that accesses to objects in Omtx by the guard of a transition t are

checked in each state in which t is pending (in other words, we assume that

in each state, guards of all pending transitions are evaluated). It su�ces to

check accesses to objects in Omtx by the command of a transition only when

that transition is explored by the search algorithm; to see this, note that the

following variant of MLD0-L is equivalent to MLD0-L, in the sense that it does

not change the set of systems satisfying MLD0:

MLD0-L1: o is properly locked after it becomes shared, i.e., there exists a

synchronization object o1 2 Osyn such that, for all i � startShared 0(�; o),

(1) if access(si; �(i); o), then thread(�(i)) owns o1's lock in si, and (2) for all

� 2 �, if pending(si; �) contains a transition whose guard accesses o, then �

owns o1's lock in si.

For a state s, sequence � of transitions, and transition t that is pending after

execution of � from s, let s
�

=) denote execution of � starting from s, and let

s
�;t
=) denote execution of � starting from s followed by evaluation of t's guard

and, if t is enabled, execution of t's command.

Theorem 20. Let A be a concurrent system satisfying Separation. For all threads

� and all reachable states s, if enabled (s; �) contains an invisible transition, then

either enabled(s; �) is persistent in s or enabled(s; �) contains a transition t such

that either s
hi;t
=) violates MLD0 or s

t
! s

0 and a violation of MLD0 is reachable

from s
0.

Proof: MLD0 is relatively insensitive to the order in which accesses occur. Let �

be a sequence of transitions as in the de�nition of persistent set. One can show

(roughly) that if a violation of MLD0 occurs when � is executed before t, then a

violation also occurs if t is executed before �. For details, see [Sto00]. ut

Theorem 30. Let A be a concurrent system with a �nite and acyclic state space

and satisfying Separation, BoundedInvis, and DetermInvis. A violates MLD0 i�

IF-SSS �nds a violation of MLD0.

2 It is easy to show that MLD0 is stricter than MLD (i.e., a system that satis�es MLD0

also satis�es MLD). This does not enable one to easily prove the theorems in this

section from the unprimed theorems in previous sections or vice versa.

Proof: An invariant I is used to show that violations of MLD0 are eventually de-

tected, even if they cause persistent sets or sleep sets to be computed incorrectly.

The proof of invariance of I is based on Theorem 20. For details, see [Sto00]. ut

Theorem 50. Let A be a concurrent system with a �nite and acyclic state space

and satisfying Separation, InitVis, BoundedInvis, and DetermInvis. A violates

MLD0 i� C(A) violates MLD0.

Proof: ((): Let � be an execution of C(A) violating MLD0. Expanding each

transition in � into the sequence of transitions of A from which it is composed

yields an execution of A that violates MLD0.

()): Theorem 30 implies that IF-SSS explores an execution � of A that

violates MLD0. Composing sequences of transitions in A to form transitions of

C(A) yields an execution of C(A) that violates MLD0. ut

The stricter constraints on initialization in MLD0 allow the de�nition of pendInvisOps

to be tightened. Let pendInvisOps 0 denote that variant of pendInvisOps . Let Al-

gorithm 2-MLD0 denote the variant of Algorithm 2-MLD that uses pendInvisOps 0.

Theorem 60. Let A be a concurrent system. In every state s of A, Algorithm

2-MLD0 returns a set P such that either P is persistent in s or P contains a

transition t such that t violates MLD0 in s.

Proof: In Algorithm 2-MLD0, only the calculation of pendInvisOps 0 depends on

MLD0, and pendInvisOps 0(s; �) is invoked only for threads � that have already

been added to T . Suppose for all threads � in T , all transitions in enabled(s; �)

satisfy MLD0 in s. Then all invocations of pendInvisOps 0 in this invocation of

Algorithm 2-MLD0 returned accurate results, so P is persistent in s. Suppose

there exists a thread � in T such that some transition t in enabled(s; �) violates

MLD0 in s. Then P contains t, and t violates MLD0 in s. ut

Let A be a concurrent system with a �nite and acyclic state space and satisfy-

ing Separation, InitVis, BoundedInvis, and DetermInvis. Consider applying SSS

with Algorithm 2-MLD0 to C(A) augmented with the lockset algorithm, modi�ed

slightly to check MLD0. Theorem 60 implies that if no violation of MLD0 is found,

then C(A) satis�es MLD0 and hence MLD. Theorem 3 Theorem 50 then implies

that A satis�es MLD. Theorem 5 can then be used to conclude that reachability

of control points and deadlocks was correctly determined during the search.

Let A be a concurrent system with a �nite and acyclic state space and sat-

isfying Separation, InitVis, BoundedInvis, and DetermInvis. Consider applying

IF-SSS with Algorithm 2-MLD0 to A augmented with the lockset algorithm,

modi�ed slightly to check MLD0. Theorems 30 and 60 imply that if no violation

of MLD0 is found, then A satis�es MLD0 and hence MLD. Theorem 3 implies

that reachability of control points and deadlocks was correctly determined dur-

ing the search. Similarly, consider applying SSS to C(A) augmented to check

MLD0. Theorem 60 implies that if no violation of MLD0 is found, then C(A)

satis�es MLD0, so Theorem 50 implies that A satis�es MLD0 and hence MLD.

Theorem 5 implies that reachability (in A) of control points and deadlocks was

correctly determined during the search.

10 Implementation

A prototype implementation for multi-threaded single-process systems is mostly

complete, thanks to Gregory Alexander, Aseem Asthana, Sean Broadley, Sriram

Krishnan, and AdamWick. It transforms Java class �les (application source code

is not needed) by inserting calls to a scheduler at visible operations and inserting

calls to a variant of the lockset algorithm at accesses to shared objects. The

scheduler, written in Java, performs state-less selective search. The JavaClass

toolkit [Dah99] greatly facilitated the implementation.

The scheduler runs in a separate thread. The scheduler gives a selected user

thread permission to execute (by unblocking it) and then blocks itself. The se-

lected user thread executes until it tries to perform a visible operation, at which

point it unblocks the scheduler and then blocks itself (waiting for permission to

continue). Thus, roughly speaking, only one thread is runnable at a time, so the

JVM's built-in scheduler does not a�ect the execution.

The tool exploits annotations indicating which objects are (possibly) shared.

Object creation commands can be annotated as creating unshared objects, ac-

cesses to which are not intercepted, or as creating tentatively unshared objects,

accesses to which are intercepted only to verify that the objects are indeed

unshared. Objects created by unannotated commands are potentially shared;

accesses to them are intercepted to check MLD and, if necessary, are recorded to

determine dependencies. Currently, annotations are provided by the user; escape

analysis, such as [WR99], could provide them automatically.

By default, classes have �eld granularity, i.e., the intercepted operations are

�eld accesses (get�eld and put�eld instructions). For some classes, it is desir-

able for operations to correspond to method calls. We say that such classes have

method granularity. For example, with semaphores, operations seen by the sched-

uler should be up (also called V or signal) and down (also called P or wait), not

reads and writes of �elds. Intercepting operations at method granularity reduces

overhead and allows use of class-speci�c dependency relations. The annotation

�le indicates which classes have method granularity.

When methods are considered as operations, the boundaries of the opera-

tion must be de�ned carefully, because a method can invoke methods of and

directly access �elds of other objects. In our framework, by default, an inter-

cepted method invocation i represents accesses to this performed by i but not

accesses to this performed by methods invoked within i; it does not represent

accesses to other objects. Accesses by i to instances of other classes are inter-

cepted based on the granularities of those other classes; indicating that a class

C has method granularity determines only how accesses to instances of C are in-

tercepted. We require that methods of classes with method granularity perform

no visible operations, except that the methods may be synchronized.

Ideally, for a class C with method granularity, all accesses to instances of C

are intercepted at the level of method invocations. If C has non-private �elds that

are accessed directly by other classes, those �eld accesses would also need to be

recorded. Therefore, we require that method granularity be used only for classes

whose instance �elds (including inherited ones) are all private or �nal (accesses

to �nal �elds are ignored). Similarly, an invocation of a method C:m can access

private �elds of instances of C other than this. We disallow method granularity

for classes that perform such accesses; a simple static analysis can conservatively

check this requirement. If this turns out to be undesirably restrictive (e.g., for

classes that use such accesses to implement comparisons, such as equals), we can

deviate from the above ideal and explicitly record such �eld accesses; a simple

static analysis can identify get�eld and put�eld instructions that possibly access

instances other than this.

Classes may be annotated as having atomic granularity. An intercepted in-

vocation i of a method (including, as always, inherited methods) of such a class

represents all computations performed by i, including computations of other

methods invoked from i except methods invoked on other instances of atomic

classes. Requirements for atomic granularity include the three above require-

ments for method granularity. Furthermore, in order to ensure that invocations

of atomic methods are dependent only with invocations of atomic methods on

the same object, we require that an instance ona of a non-atomic class accessed

by a method of an instance oa of an atomic class be \encapsulated" within oa;

speci�cally, if the computation represented by an intercepted invocation of a

method of oa accesses ona in a way other than testing whether it is an instance

of an atomic class (this accommodates \equals" methods), then all accesses to

ona occur in computations represented by intercepted invocations of methods

of oa. We also require that methods of an atomic class C do not access static

variables of classes other than C, and that all static �elds of C are private. A

proof that these conditions are su�cient is left for future work.

Currently, the user is responsible for checking the requirements for using

method or atomic granularity; static analysis could provide conservative auto-

matic checks. The Sun JDK 1.2.2 reference implementation of the java.util.Collec-

tion API mostly satis�es the requirements for atomic granularity, except for

methods that return a collection backed by another collection, such as the key-

Set, values, and entrySet methods in java.util.AbstractMap. Atomic granularity

can be used for Collection classes in programs that do not invoke such methods.

Synchronized methods and methods of classes with method or atomic granu-

larity are intercepted using automatically generated wrapper classes. Unshared

objects are instances of the original class C; shared objects are instances of C's

wrapper class, which extends C. For each such method m, the wrapper class

contains a wrapper method that overrides m. If m is synchronized, the wrapper

indicates that it is trying to acquire a lock, yields control to the scheduler, waits

for permission to proceed, invokes super.m, and then releases the lock. If the class

has method or atomic granularity, the wrapper calls the lockset algorithm and

possibly records the operation. An \invokevirtual C:m" instruction requires no

explicit modi�cation; the JVM's method lookup e�ciently determines whether

the instance is shared. For method invocations on unshared instances, the over-

head is negligible. An obvious alternative approach, which we call Outside, is

to insert near each invocation instruction a segment of bytecode that explic-

itly tests whether the instance is shared and, if so, performs the steps described

above. With Outside, the overhead is non-negligible even for unshared instances.

Another bene�t of using wrappers to intercept invokevirtual is that, when gen-

erating a wrapper, it is easy to determine whether the method being wrapped

is synchronized. With Outside, if the instance is shared, the inserted bytecode

would need to explicitly check the class of the instance, because a synchronized

method can override an unsynchronized method, and vice versa.

Field accesses, array accesses, invokespecial instructions, and synchronization

instructions (monitorenter and monitorexit) are intercepted using Outside. The

bytecode inserted near these instructions must e�ciently determine whether an

object is shared. Inserting in java.lang.Object a boolean �eld would be a nice

solution if it didn't give the JVM (Sun JDK 1.2.1) a heart attack. We insert

in java.lang.Object a boolean-valued method with body \return false". It is

overridden in all wrapper classes by a method with body \return true".

Certain calls to java.util.Random are treated as non-deterministic, i.e., all

possible return values are explored; this is like VS Toss in VeriSoft [God97].

undo(s; t) can be implemented by reverse computation, reset+replay, or check-

pointing. Reverse computation is attractive in theory but di�cult to implement.

Our prototype uses reset+replay (like VeriSoft), mainly because it is easy to

implement. ExitBlock [Bru99] and Java PathFinder [BHPV00] use checkpoint-

ing, which requires a custom JVM. Checkpointing is more e�cient than re-

set+replay for CPU-intensive programs. Experiments comparing the e�ciency

of checkpointing and reset+replay for typical applications of these testing tools

are needed. Such tools are typically applied to small problem instances that

consume relatively little CPU time.

Our prototype has been applied to some simple programs (e.g., dining philoso-

phers) but is under construction and currently has some limitations: array access-

es are not intercepted; support for notifyAll, communication objects, and RMI

are unimplemented; Algorithm 2-MLD0 and dependency relations for semaphores,

queues, etc., are unimplemented, so enabled(s) is used as the persistent set, and

a simple read/write dependency relation is used to compute sleep sets.

11 Related Work

The framework in [God97] can be regarded as the special case of ours that

handles systems with Osyn = ; and Omtx = ;.

Java PathFinder [BHPV00] incorporates a custom JVM, written in Java,

that supports traditional selective search. It ensures that each state is explored

at most once but probably has more overhead than our bytecode rewriting. It

uses partial-order reductions but does not exploit MLD, so in principle, every

access to a shared variable needs to be intercepted to check for dependencies.

Corbett's protected variable reduction [Cor00] exploits MLD to make state-

space exploration more e�cient. Corbett proposes a static analysis that conser-

vatively checks whether objects are accessed in a way that satis�es MLD. In

[Cor00], Corbett does not provide results on checking MLD during state-space

exploration and does not consider making release, notify, and notifyAll invisible

(except for releases that do not make the lock free).

In [Bru99], Bruening considers only threads interacting via shared variables;

the partial-order methods used in our framework also accommodate arbitrary

communication objects. ExitBlock corresponds roughly to IF-SSS with PS(s) =

enabled (s) and, for the calculation of sleep sets, the trivial dependency relation

T � T . ExitBlockRW corresponds roughly to IF-SSS with PS(s) = enabled(s)

and, for the calculation of sleep sets, the unconditional dependency relation

that recognizes the independence of operations on di�erent objects and of read

operations on the same object.

IF-SSS (or SSS applied to C(A)) allows the use of any persistent-set algo-

rithm and any dependency relation. This
exibility allows properties of common

synchronization constructs to be exploited. For example, for threads interacting

via a shared FIFO queue, IF-SSS can exploit the fact that in states where the

queue is non-empty, an insertion and a removal are independent. Similarly, for

interaction involving a semaphore, IF-SSS can exploit the fact that in states

where the semaphore's value is positive, an up operation is independent with a

down operation. Accesses to �elds of synchronization objects (e.g., owner and

wait) and to �elds of other synchronization constructs (e.g., the value �eld of

a semaphore) are included in ExitBlockRW's read and write sets and therefore

cause dependencies based on the simple read/write dependency relation.

ExitBlock treats release as visible and acquire as invisible. This complicates

deadlock detection in ExitBlock, and ExitBlockRW might miss deadlocks. IF-

SSS and SSS �nd all reachable deadlocks.

ExitBlockRW requires recording information about invisible operations|

speci�cally, it records the sets of objects read and written by each block. With

IF-SSS, invisible operations do not need to be recorded; they do need to be

intercepted, mainly to check MLD0, unless the system is known to satisfy MLD.

Bruening's proof that ExitBlock �nds all assertion violations [Bru99, The-

orem 3, pp. 47-48] is incomplete, because the proof implicitly assumes that all

accesses satisfy MLD. Accesses to synchronization-related state (e.g., o:owner)

need not follow MLD and therefore require special consideration in the proof.

Bruening does not prove that ExitBlock (or ExitBlockRW) is guaranteed to

�nd a violation of MLD for systems that violate MLD. Even if violations of MLD

are manifested as assertion violations, the (incomplete) proof that ExitBlock

�nds all assertion violations [Bru99, Theorem 3, pp. 47-48] does not imply that

ExitBlock �nds all violations of MLD, because that proof presupposes that the

system satis�es MLD.

In Bruening's proof that ExitBlockRW �nds all assertion violations [Bru99,

pp. 53-54], the requirements on s
0

i and s
0

i�1 are symmetric, so two swapped

segments can be swapped again, so the meaning of \Move each segment in this

way as far as possible to the left" is unclear. Our Theorem 2 clearly shows how

the idea of exploiting MLD is related to persistent sets. Bruening does not relate

ExitBlock or ExitBlockRW to existing partial-order methods.

References

[BHPV00] Guillaume Brat, Klaus Havelund, Seung-Joon Park, and Willem Visser.

Model checking programs. In IEEE International Conference on Automated

Software Engineering (ASE), September 2000.
[Bru99] Derek L. Bruening. Systematic testing of multithreaded Java programs.

Master's thesis, Massachusetts Institute of Technology, 1999.
[CDH+00] James C. Corbett, Matthew Dwyer, John Hatcli�, Corina Pasareanu,

Robby, Shawn Laubach, and Hongjun Zheng. Bandera: Extracting �nite-

state models from Java source code. In Proc. 22nd International Conference

on Software Engineering (ICSE), June 2000.
[Cor00] James C. Corbett. Using shape analysis to reduce �nite-state models of

concurrent Java programs. ACM Transactions on Software Engingeering

and Methodology, 9(1):51{93, January 2000.
[Dah99] Markus Dahm. Byte code engineering with the JavaClass API. Technical

Report B-17-98, Institut f�ur Informatik, Freie Universit�at Berlin, 1999.
[DIS99] Claudio Demartini, Radu Iosif, and Riccardo Sisto. A deadlock detec-

tion tool for concurrent Java programs. Software: Practice and Experience,

29(7):577{603, July 1999.
[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.

Extended static checking. Research Report 159, Compaq SRC, 1998.
[FA99] Cormac Flanagan and Mart��n Abadi. Types for safe locking. In Proc. Eu-

ropean Symposium on Programming (ESOP), volume 1576 of LNCS, pages

91{108. Springer-Verlag, March 1999.
[GHJ98] Patrice Godefroid, Robert S. Hanmer, and Lalita Jagadeesan. Model check-

ing without a model: An analysis of the heart-beat monitor of a telephone

switch using VeriSoft. In Proc. ACM International Symposium on Software

Testing and Analysis (ISSTA'98), pages 124{133, 1998.
[God96] Patrice Godefroid. Partial-Order Methods for the Veri�cation of Concurrent

Systems, volume 1032 of Lecture Notes in Computer Science. Springer-

Verlag, 1996.
[God97] Patrice Godefroid. Model checking for programming languages using

VeriSoft. In Proc. 24th ACM Symposium on Principles of Programming

Languages (POPL), pages 174{186. ACM Press, 1997.
[HS99] Klaus Havelund and Jens U. Skakkeb�k. Applying model checking in Java

veri�cation. In Proc. 5th and 6th International SPIN Workshops, volume

1680 of Lecture Notes in Computer Science, pages 216{231. Springer-Verlag,

September 1999.
[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas E. Anderson. Eraser: A dynamic data race detector for multi-

threaded programs. ACM Transactions on Computer Systems, 15(4):391{

411, November 1997.
[STMD96] S. M. Shatz, S. Tu, T. Murata, and S. Duri. An application of Petri net

reduction for Ada tasking deadlock analysis. IEEE Transactions on Parallel

and Distributed Systems, 7(12):1307{1322, December 1996.
[Sto00] Scott D. Stoller. Model-checking multi-threaded distributed Java programs.

Technical Report 536, Computer Science Dept., Indiana University, 2000.
[WR99] JohnWhaley and Martin Rinard. Compositional pointer and escape analysis

for Java programs. In Proc. ACM Conference on Object-Oriented Systems,

Languages and Applications (OOPSLA), pages 187{206, October 1999.

