
A Language Framework For Expressing

Checkable Properties of Dynamic Software
?

James C. Corbett1, Matthew B. Dwyer2, John Hatcli�2, and Robby2

1
University of Hawai`i

? ? ?

2
SAnToS Laboratory, Kansas State University

y

Abstract. Research on how to reason about correctness properties of

software systems using model checking is advancing rapidly. Work on ex-

tracting �nite-state models from program source code and on abstracting

those models is focused on enabling the tractable checking of program

properties such as freedom from deadlock and assertion violations. For

the most part, the problem of specifying more general program properties

has not been considered.

In this paper, we report on the support for specifying properties of dy-

namic multi-threaded Java programs that we have built into the Bandera

system. Bandera extracts �nite-state models, in the input format of sev-

eral existing model checkers, from Java code based on the property to

be checked. The Bandera Speci�cation Language (BSL) provides a lan-

guage for de�ning general assertions and pre/post conditions on methods.

It also supports the de�nition of observations that can be made of the

state of program objects and the incorporation of those observations as

predicates that can be instantiated in the scope of object quanti�ers and

used in describing common forms of state/event sequencing properties.

We describe BSL and illustrate it on an example analyzed with Bandera

and the Spin model checker.

1 Introduction

Several current projects [18, 4, 16, 1, 7] are aiming to demonstrate the e�ective-
ness of model-checking as a quality assurance mechanism for software source
code. Tools developed in these projects typically use one of the following two
strategies: (1) they take program source code and compile it to the model de-
scription language of an existing model-checker (e.g., Promela { the description
language of the Spin model-checker [17]), or (2) they use a dedicated model-
checking engine to process a model that is derived on-the-
y from source code.
Both of these strategies have relative strengths and weaknesses when it comes to
attacking what we call the model construction problem: the challenging problem

?

This work supported in part by NSF under grants CCR-9633388, CCR-9703094,

CCR-9708184, and CCR-9701418 and DARPA/NASA under grant NAG 21209.

? ? ?
Honolulu HI, 96822, USA. corbett@hawaii.edu

y
234 Nichols Hall, Manhattan KS, 66506, USA. http://www.cis.ksu.edu/santos

fdwyer,hatcliff,robbyg@cis.ksu.edu

of taking real-world software components built with sophisticated language con-
structs that give rise to gigantic state-spaces and, from these, forming correct
compact representations suitable for tractable model-checking.

Our software model-checking project, called Bandera, adopts a generaliza-
tion of the �rst strategy: it provides an environment for compiling �nite-state
models from Java source code into several existing model-checking engines in-
cluding Spin, dSpin [8], and NuSMV [3]. The environment includes numerous
optimization phases including (a) a program slicing phase to remove program
components that are irrelevant for the property being model-checked and (b)
an abstraction phase to reduce the cardinality of data sets being manipulated.
Just like in a conventional compiler, the translation process is carefully engi-
neered through various intermediate languages so that adding a new back-end
model-checker requires relatively little work.

Besides attacking the model-construction problem, we are also devoting sig-
ni�cant resources to what we call the requirement speci�cation problem: the
problem of providing powerful yet easy to use mechanisms for expressing tem-
poral requirements of software source code. Within the context of the Bandera
project, one option would be to have developers express requirements in the
speci�cation language of one of the underlying model-checkers (e.g., in Spin's
Linear Temporal Logic (LTL) speci�cation language, or Computational Tree
Logic (CTL) of NuSMV). This has several disadvantages.

1. Although temporal logics such as LTL and CTL are theoretically elegant,
practitioners and even researchers sometimes �nd it di�cult to use them to
accurately express the complex state and event sequencing properties often
required of software. Once written, these speci�cations are often hard to
reason about, debug, and modify.

2. In the Bandera project, following this option forces the analyst to commit to
the notation of a particular model-checker back-end. If more than one checker
is to be used, the speci�cations may have to be recoded in a di�erent lan-
guage (e.g., switching from LTL to CTL), and then perhaps simultaneously
modi�ed if the requirement is modi�ed.

3. This option is also problematic because it forces the speci�cation to be stated
in terms of the model's representation of program features such as control-
points, local and instance variables, array access, nested object dereferences
as rendered, e.g., in Promela, instead of in terms of the source code itself.
Thus, the user must understand these typically highly optimized represen-
tations to accurately render the speci�cations. This is somewhat analogous
to asking a programmer to state assertions in terms of the compiler's in-
termediate representation. Moreover, the representations may change de-
pending on which optimizations were used when generating the model.
Even greater challenges arise when modeling the dynamism found in typ-
ical object-oriented software: components corresponding to dynamically cre-
ated objects/threads are dynamically added to the state-space during exe-
cution. These components are anonymous in the sense that they are often
not bound directly to variables appearing in the source program. The lack

Assertion Definition
Sublanguage

Assertion Property
Specification

Temporal Property
Specification

Predicate Definition
Sublanguage

Pattern Definition
Sublanguage

f
i
c
a
t
i
o
n

Q
u
a
n
t
i

Bandera Specification Language

Fig. 1. BSL organization

of �xed source-level component names makes it di�cult to write speci�ca-
tions describing dynamic component properties: such properties have to be
expressed in terms of the model's representation of the heap.

4. Finally, depending on what form of abstraction is used, the speci�cations
would have to be modi�ed to reference abstractions of source code features

instead of the source code features themselves.

In this paper, we describe the design and implementation of the Bandera
Speci�cation Language (BSL) | a source-level, model-checker independent lan-
guage for expressing temporal properties of Java program actions and data. BSL
addresses the problems outlined above and provides support for overcoming the
hurdles one faces when specifying properties of dynamically evolving software.
For example, consider a property of a bounded bu�er implementation stating
that no bu�er stays full forever. There are several challenges in rendering this
speci�cation in a form that can be model-checked including

{ de�ning the meaning of full in the implementation,
{ quantifying over time to insure that full bu�ers eventually become non-full,
and

{ quantifying over all dynamically created bounded bu�ers instances in the
program.

BSL separates these issues and treats them with special purpose sub-languages
as indicated in Figure 1.

{ An assertion sublanguage allows developers to de�ne constraints on program
contexts in familiar assertion-style notation. Assertions can be selectively
enabled/disabled so that one can easily identify only a subset of assertions
for checking. Bandera exploits this capability by optimizing the generated
models (using slicing and abstraction) speci�cally for the selected assertions.

{ A temporal property sublanguage provides support for de�ning predicates

on common Java control points (e.g., method invocation and return) and

Java data (including dynamically created threads and objects). These predi-
cates become the basic propositions in temporal speci�cations. The temporal
speci�cation language is based not on a particular temporal logic, but on a
collection of �eld-tested temporal speci�cation patterns developed in our
earlier work [13]. This pattern language is extensible and allows for libraries
of domain-speci�c patterns to be created.
Interacting with both the predicate and pattern support in BSL is a powerful
quanti�cation facility that allows temporal speci�cations to be quanti�ed
over all objects/threads from particular classes. Quanti�cation provides a
mechanism for naming potentially anonymous data, and we have found this
type of support to be crucial for expressive reasoning about dynamically
created objects.

Assertions and predicates are included in the source code as Javadoc com-
ments. This allows for HTML-based documentation to easily be extracted and
browsed by developers, and for special purpose doclet-processing to provide a
rich tool-based infra-structure for for writing speci�cations.

Even though BSL is based on Java, and, to some extent is driven by the
desire to abstract away from the collection of model-checker back-ends found in
Bandera, we believe that the general ideas embodied in this language will be
useful in any environment for model-checking software source code.

The rest of the paper is organized as follows. Section 2 discusses some of
the salient issues that in
uenced our design of the language. Section 3 presents
a simple Java program that we use to illustrate the features of the language,
and gives a brief overview of how Bandera models concurrent Java programs.
Section 4 describes the design and implementation of the assertion sublanguage.
Section 5 describes the design and implementation of the temporal speci�cation
sublanguage. A brief discussion of the implementation of BSL in Bandera and
its application to check properties of an example is given in Section 6. Section 7
discusses related work and Section 8 describes a variety of extensions to the
current implementation of BSL that are under development and concludes.

2 Design Rationale

BSL is the latest in a series of languages and systems that we have created
to support speci�cation of temporal properties of software systems. Experience
with an earlier simple property language for Ada software [11] and with a system
of temporal speci�cation patterns [13] has yielded the following design criteria
that we have tried to follow as we address the challenging issues surrounding
specifying properties of Java source code.

1. The speci�cation language must hide the intricacies of temporal logic by
emphasizing common speci�cation coding patterns.

2. Even though details of temporal logics are to be hidden, expert users should
be allowed \back doors" to write speci�cations (or fragments of speci�ca-
tions) directly in, e.g., LTL.

3. The language must support speci�cation styles that are already used by
developers such as assertions, pre/post-conditions, etc.

4. The speci�cation artifacts themselves should be strongly connected to the
code. The speci�cations will reference features from the code (e.g., variable
names, method names, control points), so the principal speci�cation elements
should be located with the code so that developers can easily maintain them,
read them for documentation, and browse them.

5. Finally, and perhaps must importantly, the language must include support
for reasoning about language features used in real software such as dynamic
object/thread creation, interface de�nitions, exceptions, etc. These often give
rise to heap-allocated structures that are reachable by following chains of
object references, but are e�ectively anonymous when considering a Java
program's static �elds and local variables.

Criterion (1) derives from experience with the Speci�cation Patterns Project.
BSL provides a macro facility that implements all the patterns from [13]. Con-
forming to criterion (2), it also allows expert users to write their own patterns
or code their temporal logic speci�cations directly.

Following criterion (3), the design and presentation of BSL has been in
u-
enced by various Java assertion languages such as iContract [21]. In each of these
languages above, developers write their speci�cations in Java comments using
the Javadoc facility. We have also followed this approach because it is an ef-
fective way to address criterion (4): browse-able HTML documentation for BSL
speci�cations can be created, and the close physical proximity of comments and
code encourages regular maintenance.

BSL currently does not address all the program features mentioned in crite-
rion (5) (e.g., we don't discuss specifying properties of exceptions in this work),
but it does make signi�cant steps in handling heap-allocated data/threads.

3 Example

Figure 2 gives the implementation of a simple bounded bu�er implementation
in Java that is amenable to simultaneous use by multiple threads. This code
illustrates several of the challenges encountered in specifying the behavior of
Java programs. Each instance of the BoundedBuffer class maintains an array
of objects and two indices into that array representing the head and tail of
the active segment of the array. Calls to add (take) objects to (from) the bu�er
are guarded by a check for a full (empty) bu�er using the Java condition-wait
loop idiom. Comments in the code contain various BSL declarations, and we will
discuss these in the following sections.

Bandera models a concurrent Java program as a �nite-state transition sys-
tem. Each state of the transition system is an abstraction of the state of the Java
program and each transition represents the execution of one or more statements
transforming this abstract state. The state of the transition system records the
current control location of each thread, the values of program variables relevant

/**

* @observable

* EXP Full: (head == tail);

* EXP TailRange: (tail >= 0 &&

* tail < bound);

* EXP HeadRange: (head >= 0 &&

* head < bound);

*/

class BoundedBuffer f
Object [] buffer;

int bound, head, tail;

/**

* @assert

* PRE PositiveBound: (b > 0);

*/

public BoundedBuffer(int b) f
bound = b;

buffer = new Object[bound];

head = 0;

tail = bound - 1;

g

/**

* @observable

* RETURN ReturnTrue:

* ($ret == true);

*/

public synchronized

boolean isEmpty() f
return head ==

((tail + 1) % bound);

g

/**

* @assert

* POST AddToEnd:

* (head == 0) ?

* buffer[bound-1] == o :

* buffer[head-1] == o;

* @observable

* INVOKE Call;

*/

public synchronized

void add(Object o) f
while (tail == head)

try f wait(); g
catch (InterruptedException ex) fg

buffer[head] = o;

head = (head+1) % bound;

notifyAll();

g

/**

* @observable

* RETURN Return;

*/

public synchronized Object take() f
while (isEmpty())

try f wait(); g
catch (InterruptedException ex) fg

tail = (tail+1) % bound;

notifyAll();

return buffer[tail];

g
g

Fig. 2. Bounded Bu�er Implementation with Predicate De�nitions

to the property being checked, and run-time information necessary to implement
the concurrent semantics: the run state of each thread, the lock states, and the
lock and wait queues of each object. We bound the number of states in the
model by limiting the number of objects each allocator (e.g., new ClassName)
can create to k (a parameter of the analysis).

4 The Assertion Sublanguage

4.1 Rationale

An assertion facility provides a convenient way for a programmer to specify a
constraint on a program's data space that should hold when control reaches a

import assertion BoundedBuffer.BoundedBuffer.*;

import assertion BoundedBuffer.add.*;

import predicate BoundedBuffer.*;

// Enable PositiveBound pre-cond. assertion of BoundedBuffer

BufferAssertions: enable assertions f PositiveBound, AddToEnd g;

// Indices always stay in range

IndexRangeInvariant: forall[b:BoundedBuffer].

fHeadRange(b) && TailRange(b)g is universal globally;

// Full-buffers eventually get emptied

FullToNonFull: forall[b:BoundedBuffer].

f!Full(b)g responds to fFull(b)g globally;

// Empty-buffers must be added to before being taken from

NoTakeWhileEmpty: forall[b:BoundedBuffer].

fBoundedBuffer.take.Return(b)g is absent

after fBoundedBuffer.isEmpty.ReturnTrue(b)g
until fBoundedBuffer.add.Call(b)g;

Fig. 3. Bounded Bu�er Properties rendered in BSL

particular control location. In C and C++ programming, assertions are typically
embedded directly in source code using an assert macro, where the location of
the assertion is given by the position of the macro invocation in the source
program.

Due to Java's support for extracting HTML documentation from Java source
code comments via Javadoc technologies, several popular Java assertion facilities,
such as iContract [21], support de�nition of assertions in Java method header
comments. BSL also adopts this approach. For example, Figure 2 shows the
declaration of the BSL assertion PRE PositiveBound: (b > 0). In this asser-
tion, the data constraint is (b > 0) and the control location is speci�ed by the
occurrence of the tag @assert PRE in the method header documentation for
BoundedBuffer constructor: the constraint must hold whenever control is at the
�rst executable statement in the constructor.

4.2 Syntax and informal semantics

Figure 4 gives the syntax of BSL assertions. Sets of assertions are de�ned using
the Javadoc tag @assert in the header documentation for methods or construc-
tors. Each assertion set de�ned by an @assert tag can be given an optional
name, and this name along with the name for each assertion in the set, is used to
uniquely identify the assertion so that it be can be selectively enabled/disabled.
If the set name is omitted, the fully quali�ed name of the corresponding method

<assertions> ::= @assert <assertion-set-name>? <comment>* <assertion>*

<assertion-set-name> ::= <java-id> | <assertion-set-name> . <java-id>

<label> ::= <java-id>

<assertion-name> ::= <java-id>

<assertion>

::= PRE <assertion-name> : <exp> ; <comment>*

| LOCATION '[' <label> ']' <assertion-name> : <exp> ; <comment>*

| POST <assertion-name> : <exp> ; <comment>*

Fig. 4. BSL assertion syntax

is used as the name for the assertion set. The optional name is followed by zero
or more Java newline comments.

Besides precondition assertions as illustrated above, BSL supports
location assertions and postcondition assertions. LOCATION[<label>]

<assertion-name>: <exp> is satis�ed if <exp> is true when control is at
the Java statement labeled by <label> in the corresponding method).1 POST

<assertion-name>: <exp> is satis�ed if <exp> is true immediately after the
execution of any of the corresponding method's return statements or after the
execution of the last statement in the method if it has no return statement. The
expression <exp> can refer to the return value of the method using the Bandera
reserved identi�er $ret.

There are various other well-formedness conditions associated with variable
scoping that we will not discuss in detail here. For example, a precondition
assertion cannot reference local variables for the method since these have not
been initialized when the byte-code for the method body begins executing, and
a label assertion can only reference variables are in scope at the point where the
given label appears in the source code.

Once assertions have declared, a selection of the assertions can be presented
to Bandera as an assertion speci�cation to be model-checked. Figure 3 presents
a BSL �le where the �rst speci�cation BufferAssertions enables checking of
the PositiveBound and AddtoEnd assertions of Figure 2. Violated assertions are
reported back to the user by presenting a trace through the source program that
terminates at the location in which the data condition is violated.

4.3 Implementation issues

As with other Java assertion tools, the BSL assertion implementation acts as
a preprocessor: it transforms the source code and embeds each enabled asser-
tion using a Bandera library method Bandera.assert(boolean). A little bit
of extra work is needed to maintain proper label correspondence in LOCATION

1
Even though Java does not include goto's, it includes labels to indicate the targets

of break and continue statements.

assertions and to calculate the value of the variable $ret in POST assertions,
but the transformation is otherwise straightforward. One can also hardcode as-
sertions directly with Bandera.assert, but this is discouraged. When Bandera
generates models for Spin, each Bandera.assert call is translated to a Promela
ASSERT statement.

5 The Temporal Speci�cation Sublanguage

While assertions provide a convenient way to write constraints on data at partic-
ular program points, they are not powerful enough to directly specify interesting
temporal relationships between system actions. Since such temporal properties
are often required of concurrent systems, model-checkers usually support a tem-
poral property speci�cation language based on, e.g., LTL or CTL. These tem-
poral speci�cation languages subsume assertions in the sense that any assertion
(l; c), where l is a location and c a condition on the data at that location, can
be encoded in a temporal property: along all paths, it must be true in every
state s that if s's control point is l then c holds. However, model-checkers, such
as Spin, provide support for assertions because they can be checked much more
e�ciently than general temporal properties. To take advantage of the potential
for faster checks, BSL separates assertion and general temporal properties.

In this section, we describe BSL's temporal speci�cation sublanguage. First,
we introduce a system of predicates on program features including common
control points such as method entry and exit, and both class and instance data.
These predicates become the primitive propositions that one reasons about when
writing temporal property speci�cations. We describe our extensible pattern-
based system for constructing temporal speci�cations. Woven throughout both
the predicates and the temporal patterns is a notion of object quanti�cation that
provides a mechanism for generating names of dynamically created objects.

5.1 Predicate De�nition Sublanguage

BSL provides two kinds of predicates: location insensitive predicates|predicates
that are used for de�ning observables regardless of program points, and location
sensitive predicates|predicates that are used for de�ning observables at spe-
ci�c program points. For example, Figure 2 shows a declaration of a location
insensitive predicate EXP Full: (head == tail) in the class BoundedBuffer

header documentation. This form of predicate, called an expression predicate, is
often used to de�ne class invariants or to indicate distinguished states (e.g., a
full bu�er) in class or instance data. Since expression predicates do not refer to
particular control points in methods, they can only be de�ned in class header
documentation.

In addition to categorizing predicates based on location sensitivity, we also
categorize predicates based on the kinds of �elds or code to which they re-
fer. Static predicates are used to reason about static �elds (class variables) or

<predicates> ::= @observable <predicate-set-name>? <comment>* <predicate>*

<predicate-set-name> ::= <java-id> | <predicate-set-name> . <java-id>

<label> ::= <java-id>

<predicate-name> ::= <java-id>

<predicate>

::= static? EXP <predicate-name> : <exp> ; <comment>*

| INVOKE <predicate-name> [: <exp>]? ; <comment>*

| LOCATION '[' <label> '] ' <predicate-name> [: <exp>]? ; <comment>*

| RETURN <predicate-name> [: <exp>]? ; <comment>*

Fig. 5. BSL predicate de�nition syntax

program points of static Java methods. Instance predicates are used to rea-
son about instance �elds (memory cells that appear in each object of a given
class) or program points in Java virtual methods. For example, the Full predi-
cate is an instance predicate, because it refers to instance data members of the
BoundedBuffer class. The static modi�er is used in an expression predicate
declaration to indicate that it is a static predicate. When an instance predicate is
used in a speci�cation, it must be passed a parameter to indicate the instance to
which the predicate applies. For example, the FullToNonFull property of Fig-
ure 3 shows the Full predicate being parameterized by the quanti�ed variable
b.

Syntax and informal semantics Figure 5 gives the syntax of BSL predicate
de�nitions. Sets of predicates are de�ned using the Javadoc tag @observable in
the header documentation for classes or methods. Each predicate set de�ned by
an @observable tag can be given an optional name, and this name along with
the name for each predicate in the set, is used to uniquely identify the predicate
so that it can be referred to in a temporal property speci�cation. If the set name
is omitted, the fully quali�ed name of the corresponding class or method is used
as the name for the predicate set. The optional name is followed by zero or more
Java newline comments.

Besides expression predicates as illustrated above, BSL supports invocation
predicates, location predicates, and return predicates, which are all location
sensitive predicates that are de�ned in method header documentation. These
location sensitive predicates are static if they are de�ned for static methods.

INVOKE <predicate-name> [: <exp>]? is true when control is at the �rst
executable statement in the corresponding method and <exp> is true; absence
of <exp> defaults to true. For instance INVOKE predicates, an additional con-
straint applies: the supplied object parameter must match the receiver ob-

ject (i.e., the object upon which the method was invoked). For example, in
the NoTakeWhileEmpty property of Figure 3, the instance INVOKE predicate

add.Call holds only when the add method is invoked on the object referenced
by the quanti�ed variable b.

The semantics of LOCATION '[' <label> ']' <predicate-name> [:<exp>]?

is similar to that of the invoke predicate, except that the relevant control point
is the Java statement labeled by <label> in the corresponding method.

RETURN <predicate-name> [:<exp>]? is similar to an invoke predicate, ex-
cept that the relevant control points are the points immediately after any of
the corresponding method's return statements or after the last statement in
the method if it has no return statement. The expression <exp> can refer to
the return value of the method using the Bandera reserved identi�er $ret. For
example, in the NoTakeWhileEmpty property of Figure 3, the instance RETURN

predicate ReturnTrue holds i� the isEmpty method was invoked on the ob-
ject referenced by the quanti�ed variable b and control is immediately after the
return statement of isEmpty and the return value of the method is true.

The Java expressions that are supported in <exp> are Java expressions that
are guaranteed to have no side-e�ects. Currently we restrict Java expressions
to exclude assignments, array or object creations, and method invocations to
assure side-e�ect freedom.

There are various other well-formedness conditions associated with variable
scoping that we will not discuss in detail here. For example, a return predicate
cannot refer to local variables of the method since there might be several re-
turn statements for the method with each having a di�erent set of visible local
variables.

Implicit Constraints Since the execution of certain Java/BSL operators can
throw run-time exceptions (e.g., NullPointerException), expressions containing
such operators are conjoined with implicit constraints prohibiting such excep-
tions (which might otherwise interfere with the model checking). For exam-
ple, the predicate expression x.f is interpretted as (x != null) && x.f|if
x == null, the predicate is false. If static analysis can determine that such ex-
ceptions will not be thrown, then the constraints can be omitted.

5.2 Specifying Temporal Patterns

The automata and temporal-logic formalisms that are commonly used to describe
state and event sequencing properties of concurrent systems can be subtle and
di�cult to use correctly. Even people with signi�cant experience with temporal
logics �nd it di�cult to specify common software requirements in their formalism
of choice. Consequently it is a signi�cant challenge to make these formalisms
amenable to e�ective use by practicing software developers.

To address this issue, in previous work [10] we identi�ed a small number of
commonly occurring classes of temporal requirements, e.g., invariance, response,
and precedence properties. We refer to these classes as speci�cation patterns;
there are �ve basic patterns:

{ universal properties require the argument to be true throughout the execu-
tion

{ absence properties require that the argument is never true in the execution

{ existence properties require that the argument is true at some point in the
execution

{ response properties require that the occurrence of a designated state/event
is followed by another designated state/event in the execution

{ precedence properties require that a designated state/event always occurs
before the �rst occurrence of another designated state/event

In addition several chain patterns allow for the construction of sequences of de-
pendent response and precedence relationships to be speci�ed. A web-site [12]
presents the current set of eight patterns and their variations as well as trans-
lations into �ve di�erent common temporal speci�cation formalisms, including
LTL and CTL.

In developing this system of patterns we found that it was useful to distin-
guish the required pattern of states/events from the region of system execution
in which this pattern was required. Pattern scopes de�ne variations of the basic
patterns in which checking of the pattern is disabled during speci�ed regions of
execution. There are �ve basic scopes; a pattern can hold

{ global ly throughout the system's execution,

{ after the �rst occurrence of a state/event,

{ before the �rst occurrence of a state/event,

{ between a pair of designated states/events

{ during the interval, or after one state/event until the next occurrence of
another state/event or throughout the rest of the execution if there is no
subsequent occurrence of that state/event

In subsequent work [13], we validated that these speci�cation patterns were
representative of a large majority of the temporal requirements that researchers
and users of �nite-state veri�cation tools had written. We studied over 600 prop-
erty speci�cations and found that over 94% were instances of the patterns; inter-
estingly over 70% of the properties were either universal or response properties.

We believe that there are several advantages to a pattern based approach. It
can shorten the learning curve by presenting a smaller collection of concepts to
speci�cation writers. These patterns are expressible in nearly all of the commonly
used speci�cation languages for existing �nite-state veri�cation tools, thus, pat-
terns provide some degree of tool independence. Finally, techniques for optimiz-
ing the construction of �nite-state models can exploit information about the
structure of the patterns.

BSL builds o� of this work by providing a structured-English language front-
end for the patterns which is illustrated in the fourth and �fth rule sets of Fig-
ure 6. Common synonyms are supported. For example, invariance and universal

patterns and leads to can be used to express the FullToNonFull property from
Figure 3 as

<temporal> ::= <id> : <quantifier>* <pattern>

<quantifier> ::= forall [<ids> : <java-id>] .

<ids> ::= <id>

| <ids> , <id>

<pattern> ::= <pred-expr> is universal <scope>

| <pred-expr> is invariant <scope>

| <pred-expr> is absent <scope>

| <pred-expr> exists <scope>

| <pred-expr> precedes <pred-expr> <scope>

| <pred-expr> leads to <pred-expr> <scope>

| <pred-expr> responds to <pred-expr> <scope>

<scope> ::= globally

| before <pred-expr>

| after <pred-expr>

| between <pred-expr> and <pred-expr>

| after <pred-expr> until <pred-expr>

<pred-expr> ::= <predicate-name>

| <predicate-name> (<id>)

| (<pred-expr>)

| ! <pred-expr>

| <pred-expr> && <pred-expr>

| <pred-expr> || <pred-expr>

| <pred-expr> -> <pred-expr>

Fig. 6. BSL Pattern and Quanti�er Syntax

FullToNonFull: forall[b:BoundedBuffer].

{Full(b)} leads to {!Full(b)} globally

These pattern speci�cations are then translated into the speci�cation formal-
ism for the chosen checker. For example, if using Spin the leads to part of this
property would be translated to the following LTL

[]({Full(b)} -> <> {!Full(b)})

Bandera supports user de�ned extension of BSL patterns. Users can de�ne
their own patterns and mappings to low-level speci�cation formalisms. In this
way, an expert speci�er can customize a collection of patterns for the use of the
developers on a project.

5.3 Specifying Properties for Class Instances

One of the chief di�culties in specifying properties of Java programs lies in
naming the objects that constitute the state of the system. The majority of

program state is heap allocated and is referenced through local thread variables
by navigating chains of object references. We believe that, in general, one is
interested in stating properties about all instances of a class or by distinguishing
instances of a class by observing their state. One way to achieve this is to provide
the ability to state properties for all instances of a class created during a program
run.

The syntax for universal class instance quanti�cation is given in Figure 6. BSL
provides this through a mechanism that is independent of the speci�c checker
used to reason about the property de�ned in the scope of the quanti�er. This is
achieved by customizing the model based on the quanti�ers used and by embed-
ding the property to be checked in a speci�cation pattern that assures it will be
checked only over the objects in the quanti�er's domain.

For clarity, we describe the customization of the model in terms of a source
program transformation rather than as a transformation on Bandera's inter-
mediate program representation. This transformation requires the use of non-
determinism in the model, which is not available in Java, so we introduce a static
method Bandera.choose that is translated by Bandera to non-deterministic
choice among its arguments in the model checker input. We also describe the
embedding of a quanti�ed LTL property; the approach is similar for other for-
malisms.

Universal Class Instance Quanti�cation Universal quan-
ti�cation is achieved as follows, for a quanti�ed formula
forall[var:QuantifiedClass].P(var)

1. For the bound variable var in the quanti�cation, introduce a static �eld
var of type QuantifiedClass in the public class BoundVariables. This will
introduce a global state variable for each such �eld in the �nite-state model
for the program.

2. For each �eld in BoundVariables de�ne a predicate var selected which is
true when var is not null.

3. At the end of each constructor for QuantifiedClass introduce the following
code fragment:

if (BoundVariables.var == null)

if (Bandera.choose(true,false)) BoundVariables.var = this;

where Bandera.choose(true,false) introduces a non-deterministic choice
between true and false values in the �nite-state model for the program.

4. The temporal formula, P, to be checked on the generated model is modi�ed
in two ways. First, the pattern, P, in the scope of the quanti�er, is expanded
using the name var as parameters to the referenced predicates; call this
expanded formula P var. Second, this expanded formula is embedded in a
context which controls the sequences of states on which P var is evaluated.
Speci�cally, for LTL, the expanded formula has the form:

(!var_selected U (var_selected && P_var)) || []!var_selected

Checking the modi�ed formula on the modi�ed model exploits the exhaustive
nature of model checkers. For each trace of the unmodi�ed model that would be
generated by Bandera, the modi�ed model creates a trace in which each instance
of the QuantifiedClasswill be bound to var. At the state in which the binding
is established the modi�ed temporal formula will trigger the checking of P var.

Note that when nested quanti�cation is used the var selected condition is
de�ned such that it is true only when all of the bound variables in the quanti�ers
have been assigned a non-null value.

Implementation Issues There are several advantages to implementing sup-
port for quanti�cation early in the process of extracting �nite-state models from
Java programs : checker independence and optimization.

The technique described above is applied to the internal representation of
Java code prior to the generation of model checker input, e.g., Promela for Spin.
Thus, quanti�ed temporal speci�cations can be checked with any of the sup-
ported veri�ers. Furthermore, since it is possible to generate Java from our inter-
nal representation, it is possible for Java model checkers, such as Java Path�nder
2 from NASA's Ames Laboratory, to check quanti�ed temporal speci�cations as
long as they map the Bandera.choosemethod calls to non-deterministic choice
in the underlying model.

The scopes in speci�cation patterns de�ne the end-points of regions in which
the pattern should be checked. If those end-points do not occur, then the speci�-
cation is vacuously true. For this reason, by performing object
ow analyses [14]
we can determine the set of objects that can possibly in
uence the satisfaction
of scope delimiting predicates. This information can be used to restrict the set
of objects over which a quanti�er must range. Consider the speci�cation

forall[s:SuperType].

{Pred(s)} is absent after {init.Return(s)}

in this case we need only calculate the set of instances of SuperType for which
the init method is called. An upper approximation of this set can by calculated
in terms of the sub-types of SuperType that can appear as the receiver object
of an init invocation. The code from step 3, described above, need only be
added to those sub-types; this may signi�cantly reduce the cost of checking the
quanti�ed property by reducing the number of values that will be assigned to
the bound variable, s.

6 Implementation and Preliminary Results

BSL support has been implemented in the latest version of the Bandera toolset
[4]. The user interface provides a signi�cant advance over the previous interface
for specifying program properties [5] by extracting assertions and predicates
and presenting the latter as building blocks for instantiating temporal pattern
speci�cations.

Property Sliced Never-claim States States Stored

Deadlock No - 240047

Deadlock Yes - 51757

Bu�erAssertions No - 280575

Bu�erAssertions Yes - 17797

IndexRangeInvariant Yes 14 45215

IndexRangeInvariant, Bu�erAssertions Yes 14 115387

FullToNonFull Yes 25 64687

FullToNonFull, Bu�erAssertions Yes 25 154842

Fig. 7. BoundedBu�er Property Check Data

To illustrate the bene�ts of selectively analyzing program properties we built
a simple environment for the BoundedBuffer class. The environment consists of
four threads: a main thread that instantiates two BoundedBuffers loads one of
the bu�ers until it is full, then passes the pair of bu�ers to threads that read
from one bu�er and write to the other such that a ring topology is established.
An additional thread repeatedly polls the state of the two BoundedBuffers to
determine if they are empty. With this environment all of the properties in
Figure 3 will be true, yet the bu�ers will be forced through all of their internal
states given their bound.

Figure 7 shows the size of the state space for checks of several properties in
Figure 3. We only used Bandera's slicing capabilities in these checks; Bandera
can also abstract program data to extract compact models. Slicing is driven by
the expressions used in assertions and predicates in the properties being checked
and is fully automatic. We omit timing data noting only that the total time
to perform these checks was less than a minute in all cases (including slicing,
model extraction, and model checking). By default, Bandera will extract a model
suitable for deadlock checking. We used SPIN's deadlock checking ability for the
�rst two checks; slicing has a modest impact on the state space since most of this
small program can in
uence the execution of Java locking operations and wait

statements. The BufferAssertions checks were obtained by enabling assertion
checking with SPIN; slicing has a dramatic e�ect here since the program depen-
dences [15] from the assertion expressions allow the thread that polls for empti-
ness to be sliced away. The last four checks illustrate that the overhead of BSL's
quanti�cation is not prohibitive. We only show data for sliced models, the non-
sliced models are signi�cantly larger. It is interesting to note that the embedding
of the temporal formula to be checked in the formula from step 4 in Section 5.3
causes a non-trivial increase in the size of the automaton (never-claim) used in
checking the property. For IndexRangeInvariant, the basic invariant property
requires a 2 state automaton and this increases to 14 states with quanti�cation.
For FullToNonFull, the response property requires a 4 state automaton and this
increases to 25 states with quanti�cation. It is di�cult to assess the impact that
this blowup has on the cost of checking properties since we optimize the model

for each property. We are studying this question empirically to understand the
cost of quanti�cation over a broader collection of programs and properties.

7 Related Work

There is a long history of work on temporal logics for specifying properties of
concurrent systems. LTL [23] is one of the most popular such logics. E�orts to
make such logics easier to use have taken several directions including developing
diagrammatic forms [2, 9] and using stylized English [6, 13].

In recent years, increasing attention has been devoted to formally specifying
properties of design or object models, such as those supported in the uni�ed mod-
eling language (UML). UML's object constraint language (OCL) [24] provides
for speci�cation of program invariants and pre/post conditions on operations.
Weaknesses of OCL-based approaches include the lack of ability to reason about
such speci�cations and the fact that current tool support does not provide a
mechanism to transfer to such speci�cations to the code. Both of these are being
addressed by di�erent research e�orts. Alloy [20] is an object-modeling language
that has an associated tool for checking speci�cations written about the model.
Tools that support design-by-contract for Java programs such as iContract [21],
support a subset of OCL that has been tailored to Java syntax. Such tools in-
strument the program to dynamically check invariants and method pre/post
conditions. Our work �ts in this context by pushing OCL-like Java-based spec-
i�cations in several directions to make them more checkable (ala Alloy) and
to incorporate temporal speci�cations. The added bene�t is that by exploiting
model checking technology we can perform restricted checks for defects or ex-
haustive veri�cation of properties; this makes our approach more suitable for the
subtle defects that are found in multi-threaded Java systems.

The JML project [22] is attempting to provide a fully featured speci�cation
system for Java code. It provides for invariant, pre and post-conditions as do
the approaches discussed above, but it aims to be enable users to completely de-
scribe the behavior of the code. In contrast, our work is aimed at supporting the
description of partial correctness properties that can be automatically checked
against code descriptions.

Recently, Iosif and Sisto have independently developed a language for spec-
ifying LTL properties of Java source code that is similar in many respects to
ours [19]. Like ours, their language includes mechanisms for de�ning predicates
on source code features such as variable values and common control points (e.g.,
method activation, method exit, and labeled statements). A limited form of sup-
port is given for using speci�cation patterns, but no support is given for de�ning
and selectively enabling assertion speci�cations. Their language does not include
a mechanism for object quanti�cation, but it does include quanti�cation over in-
tegers. This integer quanti�cation cannot be implemented directly (due to the
unbounded nature of the domain), but they suggest that abstraction techniques
may be incorporated in the future to address this problem. They plan to imple-

ment their language as part of a larger collection of tools that they are building
for model-checking software source code [7, 8].

8 Conclusion

We have de�ned a language framework for expressing correctness properties of
dynamic Java programs. A property expressed in this framework can be rendered
in terms of commonly available features in the input languages of existing model
checking tools. This framework is integrated into the Bandera system so that
information about the property to be checked can be exploited to reduce the
size of the program model. We have implemented the core functionality of BSL
and are beginning to use it to check properties of Java code.

Work on the core of BSL has led us to pursue several extensions to allow for a
wider range of properties to be expressed. One of the most interesting of these ex-
tensions is the application of our approach to class instance quanti�cation, from
Section 5.3, to quantify over the elements of an array. The basic idea is to use
non-determinism to choose from a range of indices and then bind the array ele-
ment at that index for use in subsequent temporal formulae. We believe that this
can be applied to any container built using arrays, such as java.util.Vector.
We are experimenting with these extensions to �nd the ones that add useful new
capabilities to BSL and we plan to report on those in the future.

Acknowledgements

Thanks to Tom Ball, Sriram Rajamani, and Radu Iosif for interesting discussions
during the preparation of this paper.

References

1. Thomas Bal and Sriram K. Rajamani. Boolean programs : A model and process

for software analysis. Technical Report 2000-14, Microsoft Research, 2000.

2. I. A. Browne, Z. Manna, and H. B. Sipma. Generalized temporal veri�cation

diagrams. Lecture Notes in Computer Science, 1026, 1995.

3. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV : a new symbolic

model checker. International Journal on Software Tools for Technology Transfer,

2000. to appear.

4. James C. Corbett, Matthew B. Dwyer, John Hatcli�, Shawn Laubach, Corina S.

P�as�areanu, Robby, and Hongjun Zheng. Bandera : Extracting �nite-state models

from Java source code. In Proceedings of the 22nd International Conference on

Software Engineering, June 2000.

5. James C. Corbett, Matthew B. Dwyer, John Hatcli�, and Robby. Bandera : A

source-level interface for model checking Java programs. In Proceedings of the

22nd International Conference on Software E ngineering, June 2000.

6. R. Darimont and A. van Lamsweerde. Formal re�nement patterns for goal-driven

requirements elaboration. In Proceedings of the Fourth ACM SIGSOFT Symposium

on Foundations of Software Engineering, pages 179{190, October 1996.

7. C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool for concurrent Java

programs. Software - Practice and Experience, 29(7):577{603, July 1999.

8. C. Demartini, R. Iosif, and R. Sisto. dspin : A dynamic extension of SPIN. In

Theoretical and Applied Aspects of SPIN Model Checking (LNCS 1680), September

1999.

9. Laura K. Dillon, G. Kutty, Louise E. Moser, P. M. Melliar-Smith, and Y. S. Ra-

makrishna. A graphical interval logic for specifying concurrent systems. ACM

Transactions on Software Engineering and Methodology, 3(2):131{165, April 1994.

10. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property speci�-

cation patterns for �nite-state veri�cation. In Mark Ardis, editor, Proceedings of

the Second Workshop on Formal Methods in Software Practice, pages 7{15, March

1998.

11. Matthew B. Dwyer, Corina S. Pasareanu, and James C. Corbett. Translating Ada

programs for model checking : A tutorial. Technical Report 98-12, Kansas State

University, Department of Computing and Information Sciences, 1998.

12. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. A System of Speci�cation Patterns.

http://www.cis.ksu.edu/santos/spec-patterns, 1998.

13. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property speci�cations

for �nite-state veri�cation. In Proceedings of the 21st International Conference on

Software Engineering, May 1999.

14. David Paul Grove. E�ective Interprocedural Optimization of Object-oriented Lan-

guages. PhD thesis, University of Washington, 1998.

15. John Hatcli�, James C. Corbett, Matthew B. Dwyer, Stefan Sokolowski, and

Hongjun Zheng. A formal study of slicing for multi-threaded programs with JVM

concurrency primitives. In Proceedings of the 6th International Static Analysis

Symposium (SAS'99), September 1999.

16. K. Havelund and T. Pressburger. Model checking Java programs using Java

PathFinder. International Journal on Software Tools for Technology Transfer,

1999.

17. Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software

Engineering, 23(5):279{294, May 1997.

18. Gerard J. Holzmann and Margaret H. Smith. Software model checking : Extract-

ing veri�cation models from source code. In Proceedings of FORTE/PSTV'99,

November 1999.

19. Radu Iosif and Riccardo Sisto. On the speci�cation and semantics of source level

properties in java. In Proceedings of the First International Workshop on Auto-

mated Program Analysis Testing and Veri�cation, June 2000. (Held in conjunction

with the 2000 Internation Conference on Software Engineering).

20. Daniel Jackson. Alloy: A lightweight object modelling notation.

21. Reto Kramer. iContract|the Java Design by Contract tool. In Proceedings of

Technology of Object-Oriented Languages and Systems, TOOLS-USA. IEEE Press,

1998.

22. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: a Java modeling lan-

guage. In Formal Underpinnings of Java Workshop (at OOPSLA'98), October

1998.

23. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Speci�cation. Springer-Verlag, 1991.

24. Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise Mod-

eling with UML. Addison-Wesley, 1998.

