
Abstraction of Communication Channels in

Promela: a Case Study?

Elena Fersman and Bengt Jonsson

Dept. of Computer Systems, P.O. Box 325, S-751 05 Uppsala, Sweden,

email: felenaf,bengtg@docs.uu.se

Abstract. We present a case study of how abstractions can be applied

to a protocol model, written in Promela, in order to make in amenable for

exhaustive state-space exploration, e.g., by SPIN. The protocol is a sim-

ple version of the Five Packet Handshake Protocol, which is used in TCP

for transmission of single messages. We present techniques for abstract-

ing from actual values of messages, sequence numbers, and identi�ers in

the protocol. Instead, an abstract model of the protocol is constructed of

variables which record whether variables and parameters of messages are

equal or unequal. The abstraction works because the protocol handles

identi�ers and parameters of messages in a simple way. The abstracted

model contains only on the order of a thousand states, and safety prop-

erties have been analyzed by SPIN.

1 Introduction

When trying to analyze any reasonable communication protocol using a model-
checker, one of the biggest problems is to model it in such a way that the model-
checker can analyze it exhaustively. Anyone who has used a model-checker can
testify that this is not a trivial problem. In order to overcome the problem, one
must deal with those aspects of a protocol that case the state-space to blow up:
unbounded channels, large domains of sequence numbers and data, other data
structures, etc. An experienced protocol modeler can make judicious modeling of
such aspects without compromising the results of analysis. There are also general
principles, e.g., based on abstract interpretation, that can guide approximation
in modeling. However, we still do not have a generally available \cookbook"
of standard recipes to be used in protocol modeling. This lack becomes appar-
ent, e.g., in teaching. Students easily become frustrated when they discover the
limitations of a model-checker; being able to provide well-proven and generally
applicable cures to overcome such limitations would very likely contribute to the
spreading of modeling and model-checking.

This paper does not attempt to present a \cook-book", but rather illustrate
abstraction techniques techniques that can be applied to some common causes of
state-space explosion in model-checking. More precisly, we present a case-study

? support in part by the ASTEC competence center, and by the Swedish Board for

Industrial and Technical Development (NUTEK)

on the modeling in Promela of the so-called Five Packet Handshake Protocol,
which is used in TCP for transmission of single messages. Descriptions of the
protocol appear, e.g., in [Bel76] and [Lyn96, pp. 718{729]. We focus on abstrac-
tion of some aspects of the protocol that makes it hard to model and analyze it
in SPIN:

{ The protocol works under rather general assumption about the communica-
tion channel, which can reorder, lose, and duplicate messages.

{ The protocol uses an unbounded set of identi�ers.

These two aspects usually imply that it is not possible to perform exhaustive
state-space exploration of a naive Promela model. We will therefore present some
abstraction techniques which allow to decrease the state-space signi�cantly, in
order to make exhaustive analysis possible. The abstraction is based on the ob-
servation that the protocol handles identi�ers and parameters of messages in
a simple way: the only operation performed is equality test and generation of
new identi�ers. Inspired by this observation, we construct an abstract model of
the protocol, where the values of variables and message parameters are totally
removed. Instead, a set of boolean variables is used to record whether variables
and message parameters are equal or unequal to each other. Based on a choice of
boolean variables, an abstract model of the protocol is constructed, which simu-
lates the original one in the usual sense of being a safety-preserving abstraction
(e.g., [CGL94,DGG97]).

Related Work The basic principles underlying the construction of an abstract
models are understood from e.g., [CC77,CGL94,DGG97]). Recently, they have
become used as a means to make a model of a concurrent system amenable
to model checking. One approach is based on predicate abstraction, proposed
by Graf and Sa�idi [GS97], in which the state-space of the abstract model is
de�ned by a set of boolean variables. Each boolean variable corresponds to a
set of concrete states, i.e., it can be regarded as a predicate on the states of the
concrete model. The transitions of the abstract model are constructed by proving
theorems about the pre- and postconditions of the statements of the concrete
model. Graf and Sa�idi use the interactive theorem prover PVS for this purpose.

Das et al. [DDP99] instead use a specialized automated theorem-prover. Other
works in this area are, e.g., by Bensalem et al. [BLO98], by Colon and Uribe
[CU98], by Lesens and Sa�idi [LS97], and by Sa�idi and Shankar [SS99]. These
works have not explicitly considered unbounded channels in the way considered
in this paper.

The idea of abstracting contents of unbounded channels by recording only
relevant information is in some sense the basis for some symbolic approaches
to model checking of lossy channel systems [AJ96], and Petri Nets [A�CJYK96].
In some sense, we have used the idea of \data-independence" [Wol86,JP93]. A
contribution is to do this in a setting with unbounded channels.

Outline In the next section, we give a brief outline of the �ve packet handshake
protocol. A Promela model of the protocol can be found in Section 2. In Sec-
tion 3, we discuss how the state-space of the protocol can be reduced by some

abstractions. We also try to provide some general principles underlying these
abstractions. Section 4 reporst on the e�ect of performing a drastic abstraction
on the protocol Section 5 contains conclusions and directions for future work.

2 A Five Packet Handshake Protocol

In this section, we describe the Five Packet Handshake Protocol, which is used
in TCP for transmission of single messages. Descriptions of the protocol appear,
e.g., in [Bel76] and [Lyn96, pp. 718{729].

The protocol is intended to transmit single messages from a sender to a
receiver. Before each message transmission, a pair of initialization messages must
be exchanged in order to establish an appropriate sequence number, which will
be associated with the message in question. After the transmission of a message,
its receipt must be appropriately acknowledged, again by a pair of messages.
Thus, �ve messages are required for the transmission of a single message, hence
the name of the protocol.

The protocol is intended to work in the presence of losses, duplications, re-
orderings, and arbitrary delays in the channel. Additionally, the sender and
receiver may crash, and be forced to reinitialize. Under these liberal conditions,
the protocol may sometimes lose a message, but never transmit duplicates. It is
well-known [Lyn96, Thm 22.13] that no protocol can implement a perfect FIFO
channel under these assumptions.

Let us give a more detailed description of the protocol. The protocol consists
of a Sender, a Receiver, and a communication medium, which can reorder, lose,
and duplicate messages. The Sender receives a stream of messages from the
environment, and it is the task of the protocol to transmit these in order to the
Receiver, which then forwards them to its environment. In order to recover from
crashes, both the Sender and the Receiver maintain a set of unique identi�ers

(UIDs), taken from an in�nite set, in stable memory (i.e., this set is not a�ected
by crashes). The set represents the set of UIDs that have previously been used,
and shall not be used again.

The transmission of a message consists of exchanging �ve packets.

1. The Sender sends a packet of form needuid(v), in which v is a fresh UID.
This is a request for a UID from the Receiver to be used for the message
transmission.

2. The Receiver sends a packet of form accept(u; v) where v is the UID received
in the previous needuid message, and u is a fresh UID to be used for the
message transmission

3. The Sender sends the message m in a packet of form send(m;u), where u is
the UID just received in the accept message

4. The Receiver acknowledges the message by an ack(u) message

5. The Sender closes the packet exchange by a cleanup(u) message, which also
tells the Receiver to stop using the UID u in any future packet exchange.

In order to recover from packet losses, any packet can be retransmitted if the next
expected packet does not arrive within some time. In the description in [Lyn96,
pp. 718{729], there is a di�erence in retransmission policy between di�erent
packet types: packets of type needuid, accept, and send can be retransmitted
an arbitrary number of times, whereas an ack packet is transmitted only on the
receipt of a send packet; this is done even if the send packet is for an \outdated"
UID. A cleanup packet can be sent in two situations.

{ on the receipt of an ack packet,
{ on the receipt of an \outdated" accept packet.

When a Sender or a Receiver crashes, they return to their initial state, but keep
the record of used UIDs. In a crash, the Sender may lose some messages that
were scheduled for transmission to the Receiver.

In the following, we give a naive simpli�ed Promela model of the protocol,
which is taken rather directly from the model of [Lyn96, pp. 718{729]. For read-
ability, we have here not included some aspects of the model:

{ We have not included our modeling of the imperfections in the channels (loss,
reordering, duplication). These can be modeled in di�erent ways: either by
changing the Promela code that sends and/or receives messages, or by adding
a demon process which scrambles the contents of Channels.

{ In the analyzed model, each message reception and the following sequence of
local operations of a process are included within atomic brackets. A standard
rule of thumb (e.g., [Lam90,MP92] is to to enclose any sequence triggered
by a receive, potentially containing a resulting send, in atomic brackets. In
the version shown here, we have omitted the atomic brackets for readability.

Some modeling conventions must be made before the protocol description can
be turned into a Promela Model:

{ The sequence of messages to be transmitted from Sender to Receiver will be
the sequence of numbers 0; 1; 2; : : : upto a maximum number MaxMsg.

{ The sequence of UIDs used will similarly be chosen as the sequence 0; 1; 2; : : :
upto a maximum number

{ We use a separate channel for each packet type, e.g., the channel Sendchan
to carry packets of form send(m;u).

Following is the naive Promela model of the protocol.

#define NULL 0 /* Undefined value of lastUID */

#define MaxSeq 200 /* How many messages to check*/

#define ChanSize 5 /* channel size */

chan Needuidchan = [ChanSize] of { byte };

chan Acceptchan = [ChanSize] of { byte , byte };

chan Sendchan = [ChanSize] of { byte , byte };

chan Ackchan = [ChanSize] of { byte };

chan Cleanupchan = [ChanSize] of { byte };

active proctype Sender()

{ byte SaccUID, /* UID used to get new sequence number */

SmsgUID, /* UID used as sequence number */

SnextMsg; /* The message to be transmitted */

byte u,v; /* Used to receive parameters of messages */

Sidle: SnextMsg < MaxSeq -> /* get next message to send*/

SnextMsg++ ;

SaccUID < MaxSeq -> /* get fresh UID*/

SaccUID++ ;

Sneeduid: do

:: Needuidchan! SaccUID /* (re)transmit first packet */

:: Acceptchan? u, v -> /* on reception of accept message */

if

:: v == SaccUID -> /* if correct uid start sending */

SmsgUID = u ; break

:: else -> /* otherwise send cleanup */

Cleanupchan ! u

fi

:: Ackchan? u -> /* on a spurious ack */

Cleanupchan ! u /* reply with cleanup */

:: goto Scrash /* crash */

od;

Ssend: do

:: Sendchan!SnextMsg,SmsgUID /* (re)transmit message */

:: Ackchan? u -> /* on reception of ack */

if

:: (u == SmsgUID) -> /* if correct uid */

Cleanupchan!u; /* send cleanup and restart */

goto Sidle

:: else -> Cleanupchan!u /* otherwise send cleanup */

fi

:: Acceptchan? u,v -> /* if spurious accept */

if

:: (u != SmsgUID) -> /* if old, send cleanup */

Cleanupchan!u

:: else -> skip /* if current, do nothing */

fi

:: goto Scrash /* crash */

od ;

Scrash: do /* lose some input msgs */

:: SnextMsg < MaxSeq -> SnextMsg++

:: skip -> break

od;

goto Sidle

}

active proctype Receiver()

{ byte RaccUID, /* UID used to ge new sequence number */

RmsgUID, /* UID used as sequence number */

RlastUID, /* rembembers last sequence number */

RexpMsg; /* The message to be received */

byte m,u,v; /* Used to receive parameters of messages */

Ridle: RmsgUID < MaxSeq -> RmsgUID++ ; /* get fresh sequence number */

do

:: Needuidchan? RaccUID -> /* when needuid arrives */

break /* start sending accept */

:: Sendchan?m,u -> /* spurious send */

if /* if old uid arrives */

:: (u != RlastUID) -> Ackchan!u /* send ack */

:: else -> skip

fi

:: Cleanupchan?u -> skip /* ignore cleanup */

:: goto Rcrash /* crash */

od;

Raccept: do

:: Acceptchan! RmsgUID , RaccUID /* (re)transmit msg 2 */

:: Sendchan ? m , u -> /* on reception of send */

if

:: (u == RmsgUID) -> /* if correct uid */

RlastUID = u; /* remember uid */

assert(m >= RexpMsg); /* check ordering */

RexpMsg = m+1; break /* update expected Msg */

:: (u != RmsgUID && u != RlastUID) -> /* if old uid */

Ackchan!u /* send ack */

:: else -> skip

fi

:: Needuidchan? v -> skip /* ignore needuid */

:: Cleanupchan? u ->

if

:: (u == RmsgUID) -> /* on cleanup */

RlastUID = NULL; /* clean RlastUID */

goto Ridle

:: else -> skip

fi

:: goto Rcrash /* crash */

od;

Rack: do

:: Ackchan!RmsgUID /* (re)transmit ack */

:: Cleanupchan?u -> /* when cleanup arrives */

if

:: (u == RlastUID) -> /* if current uid */

RlastUID = NULL; /* restart */

goto Ridle

:: else -> skip /* else skip */

fi

:: Sendchan ? m , u -> /* spurious send msg */

if

:: (u != RlastUID) -> /* if old uid */

Ackchan!u /* send ack */

:: else -> skip

fi

:: Needuidchan? v -> skip /* ignore needuid */

:: goto Rcrash /* crash */

od;

Rcrash: RlastUID=NULL;

goto Ridle

}

3 Abstractions

A protocol model such as the one shown in the preceding section has far too
many states for an exhaustive analysis to be feasible. We therefore present, in
this subsection, how to obtain a rather drastic abstraction of the protocol. The
basic idea is to represent only as much information as needed to infer the possible
continued behavior of the protocol. The abstraction will abstract the state vari-
ables and channels of the (concrete) protocol model by a set of (abstract) boolean
variables. The concrete and the abstract model are related by a concretization
function
, which maps sets of states of the abstract model to sets of states of the
concrete model. For each boolean variable b, we can regard the predicates b and
:b as sets of abstract states (the sets of states where b, resp. :b, is true). These
sets correspond to the sets
(b) and
(:b) of concrete states. Note that, unlike
some other approaches to predicate abstraction (e.g., [GS97,DDP99], the sets

(b) and
(:b) need not be disjoint. We do this for convenience, in the hope of
getting a smaller abstract model. Having de�ned
(b) and
(:b) for all boolean
variables, the function
 is extended to arbitrary sets in the natural way by

(� ^ �0) �
(�) ^
(�0)

(� _ �0) �
(�) _
(�0) :

The control states of the abstract model are identical to the control states of the
concrete model.

We note that the only operations on the variables of the protocol are check
for equality, and assignment of a fresh value to a variable. For the variables
SnextMsg and RnexpMsg that model the transmitted messages, this is not quite
true, but we can make it true by not modeling them as integers. Instead, we let
each new message, which is to be transmitted by the Sender, be a fresh value.
When receiving a message, we let the receiver check that the received message
is equal to the message that the Sender is trying to send. We use a boolean
ag
to check for duplicate receptions.

We construct an abstraction for variables that are used in this way by in-
cluding, for each pair x, x0 of state variables of the protocol, an abstract boolean

variable, named x eq x0, which is true if and only if x = x0. This means that

(x eq x0) � x = x0 and
(: x eq x0) � x 6= x0 :

The abstraction of channel contents is slightly more complicated. Intuitively,
the contents of a channel may in
uence the future behavior of the protocol
by containing messages. The potential in
uence of receiving a message can be
determined by checking whether its parameters are equal or unequal to state
variables of the protocol, and also to parameters of other messages, possibly in
other channels.

Based on this idea, we construct an abstraction of channel contents using
boolean variables as follows. We regard each message as a tuple of parameters.
For instance, the messages in channels Needuidchan, Ackchan, and Cleanupchan
are tuples with one elements, and the messages in channels Acceptchan and
Sendchan are tuples with two elements. An abstract variable bwill record whether
some channel c contains a message, whose elements satisfy some equality con-
straint over its elements. An equality constraint over a set of parameters is a
conjunction of formulas of form v = v0 or v 6= v0, where v, v0 are either program
variables or parameters of the message. We use the name c mc for the boolean
variable, which records whether the channel cmay contain a message hu1; : : : ; uni
which satis�es the equality constraint over the parameters u1; : : : ; un. Note
the formulation may contain (abbreviated to mc in the variable name): since any
message in a channel can be lost arbitrarily, we can only be sure that a certain
message is not in the channel (i.e., if it was never sent). Formally, this is re
ected
by de�ning the concretization of c mc , as follows.

(c mc) � true

(: c mc) � :9hu1; : : : ; uni 2 c : :

Note that
(c mc) and
(: c mc) overlap. We do this in the hope of creating
a small abstract model. Namely, if we would have de�ned
(c mc) as the
negation of
(: c mc), then for any reachable abstract state where
(c mc)
is true, we would also have to include the corresponding abstract state where

(c mc) is false, since the channel can always lose messages. As a further slight
optimization, we require that at least one conjunct of is an equality: if all
conjuncts in are inequalities, then any strange or outdated message will make
the variable
(c mc) true in the abstract model, meaning that the variable is
uninteresting.

As an example, the abstract variable Needuidchan mc (u = SaccUID) (which
in the Promela code will be written Needuidchan mc SaccUID) records whether
the channel Needuidchan may contain a message hui such that u is equal to
SaccUID.

In principle, the abstraction could contain a boolean variable x eq x0 for each
pair x, x0 of program variables, and a variable c mc for each channel c and
corresponding equality constraint . Many of these will turn out to be dead
variables in a static analysis of the abstract model, and so are not necessary.

Having chosen a set of abstract variables, with corresponding meanings, we
should now construct an abstract Promela model, which simulates the concrete
protocol model. This means that if the concrete model can make an atomic step
from control point p to p0 while changing the state of variables and channels from
s to s0, then for each state t of the abstract variables such that
(t) = s, there
should be a state t0 of the abstract variables such that
(t0) = s0 and such that
the abstract model can make a step from control point p to p0 while changing
the state of variables t to t0. All safety properties of the abstract model will then
also be satis�ed by the concrete model [CGL94,DGG97]). Below, we make one
suggestion for how this can be carried out.

We regard the concrete Promela model as consisting of a collection of guarded
commands. For instance, an atomic statement of form

Somechan?u1; u2 -> if

:: guard1 -> stmts1
� � �

:: guardn -> stmtsn
fi

is regarded as consisting of a set of atomic guarded commands of form

GCi � Somechan?u1; u2 -> guardi -> stmtsi

for i = 1; : : : ; n (We assume that the statement can not deadlock after reception
of a message from Somechan).

For each GCi, we construct a set of abstract statements, which are guarded
by an expression g over abstract variables such that the set
(g) includes the set
9hu1; u2i 2 Somechan ^ guardi corresponding to the guard of GCi. Furthermore,
the abstract statements must update all abstract variables that may be a�ected
by the assignments and send statements in stmtsi. The updates to each such ab-
stract variable b is guided by a postcondition sp(GCi; true) of GCi with respect
to the predicate true. More precisely, b is assigned to TRUE under a condition
truecond, such that
(truecond) is implied by the conjunction of sp(GCi; true)
and
(b). Analogously, b is assigned to FALSE under a condition falsecond, such
that
(falsecond) is implied by the conjunction of sp(GCi; true) and
(:b). Al-
ternatively, abstract variables of form x eq x0 can be updated by an expression
exp such that such that x = x0 ,
(exp) is implied by sp(GCi; true). Note that
the postcondition may refer to the values of variables before the statement.

Let us consider some examples. The statement

Ackchan? u ->

if

:: (u == SmsgUID) -> Cleanupchan!u; goto Sidle

:: else -> Cleanupchan!u

fi

which occurs within atomic brackets, is regarded as two guarded commands. The
�rst one,

Ackchan? u -> (u == SmsgUID) -> Cleanupchan!u; goto Sidle

has the guard

9hui 2 Ackchan : u = SmsgUID

and the postcondition (disregarding the goto)

9hui 2 Ackchan
� : u = SmsgUID ^ Cleanupchan= Cleanupchan

�

[hSmsgUIDi

where we use v� to denote the value of v before the statement. The guard can
be abstraced by the predicate Ackchan mc (u = SmsgUID), which in the code
is given the name Ackchan mc SmsgUID. Since the channel Cleanupchan is up-
dated, the abstract statement must update variables of form Cleanupchan mc .
For instance, the variable Cleanupchan mc (u = RmsgUID) will be true after the
statement, if either it was true before the statement, or if RmsgUID is equal to
SmsgUID. The same holds for a variable of form Cleanupchan mc (u = RlastUID).
Summarizing, the corresponding abstract statement will have the form

Ackchan_mc_SmsgUID ->

Cleanupchan_mc_RmsgUID = (Cleanupchan_mc_RmsgUID || RmsgUID_eq_SmsgUID);

Cleanupchan_mc_RlastUID = (Cleanupchan_mc_RlastUID || RlastUID_eq_SmsgU);

goto Sidle

Similarly, the second statement, which can be written

Ackchan? u -> (u != SmsgUID) -> Cleanupchan!u

can be abstracted to

Cleanupchan_mc_RmsgUID =

(Cleanupchan_mc_RmsgUID || (Ackchan_mc_RmsgUID && ! SmsgUID_eq_RmsgUID));

Cleanupchan_mc_RlastUID =

(Cleanupchan_mc_RlastUID || (Ackchan_mc_RlastUID && ! SmsgUID_eq_RlastUID))

Note here that we have transformed the control structure by omitting the guard,
which would be abstracted by Ackchan mc (u 6= SmsgUID). Such a guard will
probably be true most of the time, so we omit it.

4 Abstraction of the Protocol

In this section, we report on our manual application of the abstraction tech-
nique of the previous section to the Five Packet Handshake Protocol. In the
abstract protocol model, boolean variables are chosen as described in the previ-
ous section. A (manual) dependency analysis is used to avoid including abstract
variables that do not a�ect (directly or indirectly) the control
ow of the proto-
col. The code of the abstract model is generated according to the principles in
the preceding section. Some things to mention are the following.

{ The set of messages, which in the concrete model are represented by integers,
and assigned to variables SnextMsg and RexpMsg, is treated in the same way
as UIDs. In order to do that, we must �rst change the mechanism for checking
that messages are not duplicated by the protocol. In the model of Section 2,
this mechanism relies on the fact that messages are generated as increasing
integers. We change this mechanism as follows. When a message is received,
it is checked that it is equal to the message SnextMsg that the sender is trying
to send. In addition, a boolean
ag received SnextMsg records whether this
message has been received previously. The
ag is reset when a new message
is considered for transmission by the sender.

{ Since the boolean variables for comparisons are not local to any process, we
make all variables global.

{ Names of variables are chosen to re
ect their meaning: for instance,
RaccUID eq SaccUID is true i� the variables RaccUID and SaccUID have the
same value. The variable Accchan mc neg RmsgUID and SaccUID is true if
the channel Acceptchan may contain a message u,v, where the value of u is
di�erent from that of RmsgUID and v is equal to SaccUID.

{ Most of the abstract statements have been constructed in a rather uniform
way. One statement, which maybe was not so straightforward, is the abstrac-
tion of

Acceptchan? u, v -> v == SaccUID -> SmsgUID = u ; break

which is the normal reception of an accept message by the Sender, at control
point Sneeduid. One problem concerned the update of Ackchan mc SmsgUID,
which records whether the channel Ackhanmay contain the message SmsgUID.
The problem is that the above statement assigns a value of SmsgUID, about
which it gives no information. A safe abstraction would be to set
Ackchan mc SmsgUID to true. This abstraction is su�cient to prove absense
of duplication, but cannot prove that the protocol delivers all messages in
the absense of crashes: the reason is that the abstract statement
Ackchan mc SmsgUID = TRUE automatically \inserts" an acknowledgment
into the channel Ackchan.
A better solution is to guard the statement Ackchan mc SmsgUID = TRUE by
some checks. For instance, if the channel Acceptchan does not contain any
message hu,vi where u is di�erent from RmsgUID and v is equal to SmsgUID,
then the statement can be guarded by Ackchan mc RmsgUID = TRUE, since u
must then be equal to RmsgUID. We can make a similar check for RlastUID.
The result is the abstract statement

Ackchan_mc_SmsgUID =

((Accchan_mc_neg_RmsgUID_and_SaccUID

&& Accchan_mc_neg_RlastUID_and_SaccUID

)

|| (Accchan_mc_RmsgUID_and_SaccUID && Ackchan_mc_RmsgUID)

|| (Accchan_mc_RlastUID_and_SaccUID && Ackchan_mc_RlastUID)

) ;

A version of the abstract protocol model, without comments, is given in the
appendix.

Analysis of Abstract Model The abstract Protocol model shown above has a
state space de�ned by control points and 20 boolean variables. The number of
reachable states, as reported by SPIN, is 575. SPIN was used to analyze that the
protocol delivers messages without duplication. On the other hand, the protocol
can lose messages. If the possibility of crashes is excluded, then the number of
reachable states becomes only 46, and SPIN could check that no messages are
lost. This check was conducted using the boolean
ag received SnextMsg.

5 Discussion and Conclusion

We have reported on the modeling and veri�cation in SPIN of a protocol for
single message transmission in TCP. A naive model of the protocol has far too
many states for making an exhaustive analysis of the state-space possible. This
situation is typical for any protocol which uses asynchronous message passing,
where there are more than a couple of di�erent message types.

The main part of the paper presents some techniques for reducing the state
space by abstracting away the channels and data variables with unbounded
ranges. In the particular case of this protocol, we could replace variables and
channels by equality constraints, which were adapted to expressing properties of
messages in channels. A contribution is to do this in a setting with unbounded
channels. Since we cannot perform symbolic manipulations in SPIN, we have
to represent the equality constraints in some way: we have chosen to represent
each relevant equality constraint by a boolean variable. Other representations
could have been possible, such as choosing a small �nite domain where values
are reused in an appropriate way (as done, e.g., in [JP93]), but we guess that
such a representation would be less e�cient in the presence of message channels.

In this work, we have produced the abstraction manually. This introduces
a substantial risk for errors, and it would, of course, be desirable to perform
the abstractions automatically. The abstractions of most statements were rather
straight-forward, but a few required some care in order to generate a su�ciently
detailed abstract model.

One motivation for the work is our experience that, as part of teaching for-
mal methods, and protocol validation, it is important to teach good techniques
for producing compact and manageable protocol models. In order not to lose
the essence of formality, it is important that students understand how to make
\correct" simpli�cations of a protocol, by means of abstractions (preferably safe
abstractions), protocol transformations, etc. The principles for making abstrac-
tions are known, but a limited number of examples of their practical use have
been published in the literature, in a way that can be read by students. With
time, a well-documented library of safe abstractions should be developed.

Acknowledgments We are grateful to the reviewers for insightful comments,
which helped improve the paper considerably.

References

[A�CJYK96] Parosh Aziz Abdulla, Karlis �Cer�ans, Bengt Jonsson, and Tsay Yih-Kuen.

General decidability theorems for in�nite-state systems. In Proc. 11th

IEEE Int. Symp. on Logic in Computer Science, pages 313{321, 1996.

[AJ96] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreli-

able channels. Information and Computation, 127(2):91{101, 1996.

[Bel76] D. Belsnes. Single-message communication. IEEE Trans. on Computers,

COM-24(2):190{194, Feb. 1976.

[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of in-

�nite state systems automatically and compositionally. In Alan J. Hu

and Moshe Y. Vardi, editors, Computer Aided Veri�cation, volume 1427 of

Lecture Notes in Computer Science, pages 319{331. Springer-Verlag, 1998.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed model for

static analysis of programs by construction or approximation of �xpoints.

In Proc. 4th ACM Symp. on Principles of Programming Languages, pages

238{252, 1977.

[CGL94] E. M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstrac-

tion. ACM Trans. on Programming Languages and Systems, 16(5), Sept.

1994.

[CU98] M.A. Colon and T.E. Uribe. Generating �nite-state abstractions of reactive

systems using decision procedures. In Proc. 10th Int. Conf. on Computer

Aided Veri�cation, volume 1427 of Lecture Notes in Computer Science,

pages 293{304. Springer Verlag, 1998.

[DDP99] S. Das, D.L. Dill, and S. Park. Experience with predicate abstraction.

In Proc. 11th Int. Conf. on Computer Aided Veri�cation, volume 1633 of

Lecture Notes in Computer Science, 1999.

[DGG97] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation

of reactive systems. ACM Transactions on Programming Languages and

Systems, 19(2), 1997.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In

Proc. 9th Int. Conf. on Computer Aided Veri�cation, volume 1254, Haifa,

Israel, 1997. Springer Verlag.

[JP93] B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of

non-�nite-state programs. Information and Computation, 107(2):272{302,

Dec. 1993.

[Lam90] L. Lamport. A theorem on atomicity in distributed algorithms. Distributed

Computing, 4(2):59{68, 1990.

[LS97] D. Lesens and H. Saidi. Abstraction of parameterized networks. Electronic

Notes in Theoretical Computer Science, 9, 1997.

[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems. Springer Verlag, 1992.

[SS99] H. Saidi and N. Shankar. Abstract and model check while you prove.

In Proc. 11th Int. Conf. on Computer Aided Veri�cation, volume 1633 of

Lecture Notes in Computer Science, 1999.

[Wol86] Pierre Wolper. Expressing interesting properties of programs in proposi-

tional temporal logic (extended abstract). In Proc. 13th ACM Symp. on

Principles of Programming Languages, pages 184{193, Jan. 1986.

A Promela Code of the Abstract Model

In this appendix, we give a complete Promela listing of an abstract model of
the protocol. The abstraction was performed by hand. In order to �t the code
on paper, names of variables have been abbreviated in comparison with their
description in the paper.

For instance, the variable Accchan mc RmsgUID and neg SaccUID, which records
whether the channel Acceptchan may contain a message hRmsgUID; vi such that
v is di�erent from the value of SaccUID is written as Acc mc RmsgID a n SaccID.

#define FALSE 0

#define TRUE 1

bit RaccID_eq_SaccID;

bit RmsgID_eq_SmsgID, RlastID_eq_SmsgID, RmsgID_eq_RlastID;

bit Nu_mc_SaccID,

Acc_mc_RmsgID_a_SaccID,

Acc_mc_RmsgID_a_n_SaccID,

Acc_mc_n_RmsgID_a_SaccID,

Acc_mc_RlastID_a_SaccID,

Acc_mc_RlastID_a_n_SaccID,

Acc_mc_n_RlastID_a_SaccID,

Send_mc_SmsgID,

Send_mc_SnextMsg_a_RmsgID,

Send_mc_n_SnextMsg_a_RmsgID,

Ack_mc_SmsgID,

Ack_mc_RmsgID,

Ack_mc_RlastID,

Cu_mc_RmsgID,

Cu_mc_RlastID;

bit Received_SnextMsg = TRUE;

active proctype Sender()

{

Sidle: atomic{

Send_mc_SnextMsg_a_RmsgID = FALSE;

Received_SnextMsg = FALSE;

RaccID_eq_SaccID = FALSE;

Nu_mc_SaccID = FALSE;

Acc_mc_RmsgID_a_SaccID = FALSE;

Acc_mc_n_RmsgID_a_SaccID = FALSE;

Acc_mc_RlastID_a_SaccID = FALSE;

Acc_mc_n_RlastID_a_SaccID = FALSE

};

SneedID: do

:: Nu_mc_SaccID = TRUE /* (re)transmit the needID message */

:: atomic{(Acc_mc_RmsgID_a_SaccID || Acc_mc_n_RmsgID_a_SaccID) ->

Ack_mc_SmsgID =

((Acc_mc_n_RmsgID_a_SaccID && Acc_mc_n_RlastID_a_SaccID)

|| (Acc_mc_RmsgID_a_SaccID && Ack_mc_RmsgID)

|| (Acc_mc_RlastID_a_SaccID && Ack_mc_RlastID)

) ;

if :: Acc_mc_RmsgID_a_SaccID -> RmsgID_eq_SmsgID = TRUE

:: Acc_mc_n_RmsgID_a_SaccID -> RmsgID_eq_SmsgID = FALSE

fi;

if :: Acc_mc_RlastID_a_SaccID -> RlastID_eq_SmsgID = TRUE

:: Acc_mc_n_RlastID_a_SaccID -> RlastID_eq_SmsgID = FALSE

fi;

break

}

:: atomic{Cu_mc_RmsgID = (Cu_mc_RmsgID || Acc_mc_RmsgID_a_n_SaccID);

Cu_mc_RlastID = (Cu_mc_RlastID || Acc_mc_RlastID_a_n_SaccID)

}

:: atomic{Cu_mc_RmsgID = (Cu_mc_RmsgID || Ack_mc_RmsgID);

Cu_mc_RlastID = (Cu_mc_RlastID || Ack_mc_RlastID)

}

:: goto Scrash

od;

Ssend: do

:: atomic{Send_mc_SnextMsg_a_RmsgID =

(Send_mc_SnextMsg_a_RmsgID || RmsgID_eq_SmsgID);

Send_mc_SmsgID = TRUE

}

:: atomic{Ack_mc_SmsgID ->

Cu_mc_RmsgID = (Cu_mc_RmsgID || RmsgID_eq_SmsgID);

Cu_mc_RlastID = (Cu_mc_RlastID || RlastID_eq_SmsgID);

goto Sidle

}

:: atomic{Cu_mc_RmsgID =

(Cu_mc_RmsgID || (Ack_mc_RmsgID && ! RmsgID_eq_SmsgID));

Cu_mc_RlastID =

(Cu_mc_RlastID || (Ack_mc_RlastID && ! RlastID_eq_SmsgID))

}

:: atomic{Cu_mc_RmsgID =

(Cu_mc_RmsgID

|| ((Acc_mc_RmsgID_a_SaccID ||Acc_mc_RmsgID_a_n_SaccID)

&& ! RmsgID_eq_SmsgID));

Cu_mc_RlastID =

(Cu_mc_RlastID

|| ((Acc_mc_RlastID_a_SaccID ||Acc_mc_RlastID_a_n_SaccID)

&& ! RlastID_eq_SmsgID));

}

:: goto Scrash

od ;

Scrash: goto Sidle

}

active proctype Receiver()

{

Ridle: atomic{

RmsgID_eq_SmsgID = FALSE;

RmsgID_eq_RlastID = FALSE;

Acc_mc_RmsgID_a_SaccID = FALSE;

Acc_mc_RmsgID_a_n_SaccID = FALSE;

Send_mc_SnextMsg_a_RmsgID = FALSE;

Send_mc_n_SnextMsg_a_RmsgID = FALSE;

Ack_mc_RmsgID = FALSE;

Cu_mc_RmsgID = FALSE};

do

:: atomic{Nu_mc_SaccID -> RaccID_eq_SaccID = TRUE; break}

:: atomic{TRUE -> RaccID_eq_SaccID = FALSE; break}

:: atomic{Ack_mc_SmsgID =

(Ack_mc_SmsgID || (Send_mc_SmsgID && ! RlastID_eq_SmsgID));

Ack_mc_RmsgID =

(Ack_mc_RmsgID

|| ((Send_mc_SnextMsg_a_RmsgID ||Send_mc_SnextMsg_a_RmsgID)

&& ! RmsgID_eq_RlastID))

}

:: goto Rcrash

od;

Raccept:

do

:: atomic{Acc_mc_RmsgID_a_SaccID =

(Acc_mc_RmsgID_a_SaccID || RaccID_eq_SaccID);

Acc_mc_RmsgID_a_n_SaccID =

(Acc_mc_RmsgID_a_n_SaccID || ! RaccID_eq_SaccID);

Acc_mc_RlastID_a_SaccID =

(Acc_mc_RlastID_a_SaccID

|| (RmsgID_eq_RlastID && RaccID_eq_SaccID));

Acc_mc_RlastID_a_n_SaccID =

(Acc_mc_RlastID_a_n_SaccID

|| (RmsgID_eq_RlastID && ! RaccID_eq_SaccID));

Acc_mc_n_RlastID_a_SaccID =

(Acc_mc_n_RlastID_a_SaccID

|| (! RmsgID_eq_RlastID && RaccID_eq_SaccID))

}

:: assert (!(Send_mc_n_SnextMsg_a_RmsgID

|| (Send_mc_SnextMsg_a_RmsgID && Received_SnextMsg)))

:: atomic{(Send_mc_SnextMsg_a_RmsgID ||Send_mc_n_SnextMsg_a_RmsgID)

-> RmsgID_eq_RlastID = TRUE;

RlastID_eq_SmsgID = RmsgID_eq_SmsgID;

Acc_mc_RlastID_a_SaccID = Acc_mc_RmsgID_a_SaccID;

Acc_mc_RlastID_a_n_SaccID = Acc_mc_RmsgID_a_n_SaccID;

Acc_mc_n_RlastID_a_SaccID = Acc_mc_n_RmsgID_a_SaccID;

Cu_mc_RlastID = Cu_mc_RmsgID;

Received_SnextMsg = TRUE;

break

}

:: atomic{(Send_mc_SmsgID && ! RmsgID_eq_SmsgID && ! RlastID_eq_SmsgID)

-> Ack_mc_SmsgID = TRUE

}

:: atomic{Cu_mc_RmsgID ->

RmsgID_eq_RlastID = FALSE;

RlastID_eq_SmsgID = FALSE;

Acc_mc_n_RlastID_a_SaccID =

(Acc_mc_n_RlastID_a_SaccID || Acc_mc_RlastID_a_SaccID);

Acc_mc_RlastID_a_SaccID = FALSE;

Acc_mc_RlastID_a_n_SaccID = FALSE;

Ack_mc_RlastID = FALSE;

Cu_mc_RlastID = FALSE;

goto Ridle

}

:: goto Rcrash

od;

Rack:

do

:: atomic{Ack_mc_RmsgID = TRUE;

Ack_mc_SmsgID = (Ack_mc_SmsgID || RmsgID_eq_SmsgID);

Ack_mc_RlastID = (Ack_mc_RlastID || RmsgID_eq_RlastID)

}

:: atomic{Cu_mc_RlastID ->

RmsgID_eq_RlastID = FALSE;

RlastID_eq_SmsgID = FALSE;

Acc_mc_n_RlastID_a_SaccID =

(Acc_mc_n_RlastID_a_SaccID || Acc_mc_RlastID_a_SaccID);

Acc_mc_RlastID_a_SaccID = FALSE;

Acc_mc_RlastID_a_n_SaccID = FALSE;

Ack_mc_RlastID = FALSE;

Cu_mc_RlastID = FALSE;

goto Ridle

}

:: atomic{

Ack_mc_SmsgID =

(Ack_mc_SmsgID || (Send_mc_SmsgID && ! RlastID_eq_SmsgID));

Ack_mc_RmsgID =

(Ack_mc_RmsgID

|| ((Send_mc_SnextMsg_a_RmsgID ||Send_mc_SnextMsg_a_RmsgID)

&& ! RmsgID_eq_RlastID))

}

:: goto Rcrash

od;

Rcrash: atomic{RmsgID_eq_RlastID = FALSE;

RlastID_eq_SmsgID = FALSE;

Acc_mc_n_RlastID_a_SaccID =

(Acc_mc_n_RlastID_a_SaccID || Acc_mc_RlastID_a_SaccID);

Acc_mc_RlastID_a_SaccID = FALSE;

Acc_mc_RlastID_a_n_SaccID = FALSE;

Ack_mc_RlastID = FALSE;

Cu_mc_RlastID = FALSE;

goto Ridle

}

}

