
Bebop: A Symbolic Model Checker for Boolean

Programs

Thomas Ball and Sriram K. Rajamani

Software Productivity Tools

Microsoft Research

http://www.research.microsoft.com/slam/

Abstract. We present the design, implementation and empirical evalu-

ation of Bebop|a symbolic model checker for boolean programs. Bebop

represents control
ow explicitly, and sets of states implicitly using BDDs.

By harnessing the inherent modularity in procedural abstraction and ex-

ploiting the locality of variable scoping, Bebop is able to model check

boolean programs with several thousand lines of code, hundreds of pro-

cedures, and several thousand variables in a few minutes.

1 Introduction

Boolean programs are programs with the usual control-
ow constructs of

an imperative language such as C but in which all variables have boolean

type. Boolean programs contain procedures with call-by-value parameter

passing and recursion, and a restricted form of control nondeterminism.

Boolean programs are an interesting subject of study for a number

of reasons. First, because the amount of storage a boolean program can

access at any point is �nite, questions of reachability and termination

(which are undecidable in general) are decidable for boolean programs.1

Second, as boolean programs contain the control-
ow constructs of C,

they form a natural target for investigating model checking of software.

Boolean programs can be thought of as an abstract representation of C

programs that explicitly captures correlations between data and control,

in which boolean variables can represent arbitrary predicates over the

unbounded state of a C program. As a result, boolean programs are useful

for reasoning about temporal properties of software, which depend on such

correlations.

We have created a model checker for boolean programs called Bebop.

Given a boolean program B and a statement s in B, Bebop determines

if s is reachable in B (informally stated, s is reachable in B if there is

some initial state such that if B starts execution from this state then s

1 Boolean programs are equivalent in power to push-down automaton, which accept

context-free languages.

decl g;

main()

begin

decl h;

[6] h := !g;

[7] A(g,h);

[8] skip;

[9] A(g,h);

[10] skip;

[11] if (g) then

[12] R: skip;

else

[14] skip;

fi

end

A(a1,a2)

begin

[20] if (a1) then

[21] A(a2,a1);

[22] skip;

else

[24] g := a2;

fi

end

bebop v1.0: (c) Microsoft Corporation.

Done creating bdd variables

Done building transition relations

Label R reachable by following path:

Line 12 State g=1 h=0

Line 11 State g=1 h=0

Line 10 State g=1 h=0

Line 22 State g=1 a1=1 a2=0

Line 24 State g=1 a1=0 a2=1

Line 20 State g=1 a1=0 a2=1

Line 21 State g=1 a1=1 a2=0

Line 20 State g=1 a1=1 a2=0

Line 9 State g=1 h=0

Line 8 State g=1 h=0

Line 22 State g=1 a1=1 a2=0

Line 24 State g=1 a1=0 a2=1

Line 20 State g=1 a1=0 a2=1

Line 21 State g=1 a1=1 a2=0

Line 20 State g=1 a1=1 a2=0

Line 7 State g=1 h=0

Line 6 State g=1

Fig. 1. The skip statement labelled R is reachable in this boolean program, as shown

by the output of the Bebop model checker.

eventually executes). If statement s is reachable, then Bebop produces

a shortest trace leading to s (that possibly includes loops and crosses

procedure boundaries).

Example. Figure 1 presents a boolean program with two procedures

(main and a recursive procedure A). In this program, there is one global

variable g. Procedure main has a local variable h which is assigned the

complement of g. Procedure A has two parameters. The question is: is

label R reachable? The answer is yes, as shown by the output of Bebop

on the right. The tool �nds that R is reachable and gives a shortest trace

(in reverse execution order) from R to the �rst line of main (line 6). The

indentation of a line indicates the depth of the call stack at that point in

the trace. Furthermore, for each line in the trace, Bebop outputs the state

of the variables (in scope) just before the line. The trace shows that in

order to reach label R, by this trace of lines, the value of g initially must

be 1.2 Furthermore, the trace shows that the two calls that main makes

to procedure A do not change the value of g. We re-emphasize that this

is a shortest trace witnessing the reachability of label R.

Contributions. We have adapted the interprocedural data
ow analysis

algorithm of Reps, Horwitz and Sagiv (RHS) [RHS95,RHS96] to decide

the reachability status of a statement in a boolean program. A core idea of

the RHS algorithm is to e�ciently compute \summaries" that record the

input/output behavior of a procedure. Once a summary hI;Oi has been

computed for a procedure pr, it is not necessary to reanalyze the body of

pr if input context I arises at another call to pr. Instead, the summary

for pr is consulted and the corresponding output context O is used. We

use Binary Decisions Diagrams (BDDs) to symbolically represent these

summaries, which are binary relationships between sets of states.

In the program of Figure 1, our algorithm computes the summary

s = hfg = 1; h = 0g; fg0 = 1; h0 = 0gi when procedure A is �rst called (at

line 7) with the state fg = 1; h = 0g. This summary will be \installed" at

all calls to A (in particular, the call to A at line 9). Thus, when the state

I = fg = 1; h = 0g propagates to the call at line 9, the algorithm �nds

that the summary s matches and will use it to \jump over" the call to A

rather than descending into A to analyze it again.

A key point about Bebop that distinguishes it from other model check-

ers is that it exploits the locality of variable scopes in a program. The

time and space complexity of our algorithm is O(E � 2k) where E is the

number of edges in the interprocedural control-
ow graph of the boolean

program3 and k is the maximal number of variables in scope at any pro-

gram point in the program. In the example program of Figure 1 there are

a total of 4 variables (global g, local h, and formals a1 and a2). However,

at any statement, at most three variables are in scope (in main, g and h;

in A, g, a1, and a2).

So, for a program with g global variables, and a maximum of l local

variables in any procedure, the running time is O(E�2g+l). If the number

of variables in scope is held constant then the running time of Bebop

grows as function of the number of statements in the program (and not

the total number of variables). As a result, we have been able to model

check boolean programs with several thousand lines of code, and several

2 Note that g is left unconstrained in the initial state of the program. If a variable's

value is unconstrained in a particular trace then Bebop does not output it. Thus,

it is impossible for g to be initially 0 and to follow the same trace. In fact, for this

example, label R is not reachable if g initially is 0.
3 E is linear in the number of statements in the boolean program.

thousand variables in a few minutes (the largest example we report in

Section 4 has 2401 variables).

A second major idea in Bebop is to use an explicit control-
ow graph

representation rather than encode the control
ow of a boolean program

using BDDs. This implementation decision is an important one, as it

allows us to optimize the model checking algorithm using well-known

techniques from compiler optimization. We explain two such techniuqes

|live ranges and modication/reference analysis| to reduce the number

of variables in support of the BDDs that represent the reachable states

at a program point.

Overview. Section 2 presents the syntax and semantics of boolean pro-

grams. Section 3 describes our adaption of the RHS algorithm to use

BDDs to solve the reachability problem for boolean programs. Section 4

evaluates the performance of Bebop. Section 5 reviews related work and

Section 6 looks towards future work.

2 Boolean Programs

2.1 Syntax

Figure 2 presents the syntax of boolean programs. We will comment on

noteworthy aspects of it here. Boolean variables are either global (if they

are declared outside the scope of a procedure) or local (if they are declared

inside the scope of a procedure). Since there is only one type in the

boolean programming language, variable declarations need not specify a

type. Variables are statically scoped, as in C. A variable identi�er is either

a C-style identifer or an arbitrary string between the characters \f\ and

\g". The latter form is useful for creating boolean variables with names

denoting predicates in another language (such as f*p==*qg).

There are two constants in the language: 0 (false) and 1 (true). Ex-

pressions are built in the usual way from these constants, variables and

the standard logical connectives.

The statement sub-language (stmt) is very similar to that of C, with a

few exceptions. Statements may be labelled, as in C. A parallel assignment

statement allows the simultaneous assignment of a set of values to a set

of variables. Procedure calls use call-by-value parameter passing.4 There

4 Boolean programs support return values from procedures, but to simplify the techni-

cal presentation we have omitted their description here. A return value of a procedure

can be modelled with a single global variable, where the global variable is assigned

immediately preceding a return and copied immediately after the return into the

local state of the calling procedure.

Syntax Description

prog ::= decl � proc �

A program is a list of global

variable declarations followed by

a list of procedure de�nitions

decl ::= decl id + ; Declaration of variables

id ::= [a-zA-Z] [a-zA-Z0-9] �
An identi�er can be a regular

C-style identi�er

j f string g
or a string of characters

between 'f' and 'g'

proc ::= id (id �) begin decl � sseq end Procedure de�nition

sseq ::= lstmt + Sequence of statements

lstmt ::= stmt

j id : stmt Labelled statement

stmt ::= skip ;

j print (expr +) ;

j goto id ;

j return ;

j id + := expr + ; Parallel assignment

j if (decider) then sseq else sseq � Conditional statement

j while (decider) do sseq od Iteration statement

j assert (decider) ; Assert statement

j id (expr �) ; Procedure call

decider ::= ? Non-deterministic choice

j expr

expr ::= expr binop expr

j ! expr Negation

j (expr)

j id

j const

binop ::= 'j' j '&' j '^' j '=' j ' !=' j ')' Logical connectives

const ::= 0 j 1 False/True

Fig. 2. The syntax of boolean programs.

are three statements that can a�ect the control
ow of a program: if ,

while and assert. Note that the predicate of these three statements is a

decider, which can be used to model non-determinism. A decider is either

a boolean expression which evaluates (deterministically) to 0 or 1, or \?",

which evaluates to 0 or 1 non-deterministically.

2.2 Statements, Variables and Scope

The term statement denotes an instance that can be derived from the

nonterminal stmt (see Figure 2). Let B be a boolean program with n

statements and p procedures. We assign a unique index to each statement

in B in the range 1 : : : n and a unique index to each procedure in B in

the range n+ 1 : : : n+ p. Let si denote the statement with index i.

To simplify presentation of the semantics, we assume that variable

names and statement labels are globally unique in B. Let V (B) be the

set of all variables in B. Let Globals(B) be the set of global variables

of B. Let FormalsB (i) be the set of formal parameters of the procedure

that contains si. Let LocalsB (i) be the set of local variables and for-

mal parameters of the procedure that contains si. For all i, 1 � i � n,

FormalsB (i) � LocalsB (i). Let InScopeB (i) denote the set of all vari-

ables of B whose scope includes si. For all i, 1 � i � n, InScopeB (i) =

LocalsB (i) [Globals(B).

2.3 The Control-
ow Graph

This section de�nes the control-
ow graph of a boolean program. Since

boolean programs contain arbitrary intra-procedural control
ow (via the

goto), it is useful to present the semantics of boolean programs in terms

of their control-
ow graph rather than their syntax. To make the pre-

sentation of the control-
ow graph simpler, we make the minor syntactic

restriction that every call c to a procedure pr in a boolean program is

immediately followed by a skip statement skipc.

The control-
ow graph of a boolean program B is a directed graph

GB = (VB ;SuccB) with set of vertices VB = f1; 2; : : : ; n + p + 1g and

successor function SuccB : VB ! 2VB . The set VB contains one vertex

for each statement in B (vertices 1 : : : n) and one vertex Exitpr for every

procedure pr in B (vertices n + 1 : : : n + p). In addition, VB contains a

vertex Err = n + p + 1 which is used to model the failure of an assert

statement. For any procedure pr in B, let FirstB (pr) be the index of the

�rst statement in pr. For any vertex v 2 VB � fErrg, let ProcOfB (v) be

the index of the procedure containing v.

The successor function SuccB is de�ned in terms of the function

NextB : f1; 2; : : : ; ng ! f1; 2; : : : ; n + pg which maps statement indices

to their lexical successor if one exists, or to the exit node of the contain-

ing procedure otherwise. NextB(i) has a recursive de�nition based on the

syntax tree of B (see Figure 2). In this tree, each statement has an sseq

node as its parent. The sequence of statements derived from the sseq par-

ent of statement si is called the containing sequence of si. If si is not the

last statement in its containing sequence then NextB (i) is the index of the

statement immediately following si in this sequence. Otherwise, let a be

the closest ancestor of si in the syntax tree such that (1) a is a stmt node,

and (2) a is not the last statement in a's containing sequence. If such a

node a exists, then NextB (i) is the index of the statement immediately

following a in its containing sequence. Otherwise, NextB (si) = Exitpr,

where pr = ProcOfB (i).

If sj is a procedure call, we de�ne ReturnPtB (j) = NextB (j) (which

is guaranteed to be a skip statement because of the syntactic restriction

we previously placed on boolean programs).

We now de�ne SuccB using NextB and ReturnPtB . For 1 � i � n, the

value of SuccB (i) depends on the statement si, as follows:

{ If si is \goto L" then SuccB (i) = fjg, where sj is the statement

labelled L.

{ If si is a parallel assignment, skip or print statement then SuccB (i) =

fNextB (i)g.

{ If si is a return statement then SuccB (i) = fExitprg, where pr =

ProcOfB (i).

{ If si is an if statement then SuccB (v) = fTsuccB (i);FsuccB (i)g, where

TsuccB (i) is the index of the �rst statement in the then branch of

the if and FsuccB (i) is the index of the �rst statement in the else

branch of the if .

{ If si is a while statement then SuccB (i) = fTsuccB (i);FsuccB (i)g,

where TsuccB (i) is the �rst statement in the body of the while loop

and FsuccB (i) = NextB (i).

{ If si is an assert statement then SuccB (i) = fTsuccB (i);FsuccB (i)g,

where TsuccB (i) = NextB (i) and FsuccB (i) = n + p + 1 (the Err

vertex).

{ If si is a procedure call to procedure pr then SuccB (i) = FirstB (pr).

We now de�ne SuccB (i) for n+1 � i � n+p (that is, for the Exit vertices

associated with the p procedures of B). Given exit vertex Exitpr for some

procedure pr, we have

SuccB (Exitpr) = fReturnPtB (j) j statement sj is a call to pr g

Finally, SuccB (Err) = fg. That is, the vertex Err has no successors.

The control-
ow graph of a boolean program can be constructed in

time and space linear n+ p, the number of statements and procedures in

the program.

2.4 A Transition System for Boolean Programs

For a set V � V (B), a valuation
 to V is a function that associates

every boolean variable in V with a boolean value.
 can be extended to

expressions over V (see expr in Figure 2) in the usual way. For example,

if V = fx; yg, and
 = f(x; 1); (y; 0)g then
(xjy) = 1. For any function

f : D ! R, d 2 D, r 2 R, f [d=r] : D ! R is de�ned as f [d=r](d0) = r

if d = d0, and f(d0) otherwise. For example, if V = fx; yg, and
 =

f(x; 1); (y; 0)g then
[x=0] = f(x; 0); (y; 0)g:

A state � of B is a pair hi;
i, where i 2 VB and
 is a valuation to the

variables in InScopeB (i). States(B) is the set of all states of B. Intuitively,

a state contains the program counter (i) and values to all the variables

visible at that point (
). Note that our de�nition of state is di�erent from

the conventional notion of a program state, which includes a call stack.

The projection operator � maps a state to its vertex: � (hi;
i) = i. We

can extend � to operate on sequences of states in the usual way.

We de�ne a set �(B) of terminals:

�(B) = f�g [f hcall; i;�i; hret; i;�i j 9j 2 VB; sj is a procedure call;

i = ReturnPtB (j); and

� is a valuation to LocalsB (j)g

It is clear that �(B) is �nite since all variables in B are boolean vari-

ables. Terminals are either �, which is a place holder, or triples that are

introduced whenever there is a procedure call in B. The �rst component

of the triple is either call or ret, corresponding to the actions of a call

to and return from that procedure, the second is the return point of the

call, and the third component keeps track of values of local variables of

the calling procedure at the time of the call.

We use �1
�
!B�2, to denote that B can make an �-labeled transition

from state �1 to state �2. Formally, �1
�
!B�2 holds if �1 = hi1;
1i 2

States(B), �2 = hi2;
2i 2 States(B), and � 2 �(B), where the condi-

tions on �1, �2 and � for each statement construct are shown in Table 1.

We explain the table below:

{ The transitions for skip, print, goto and return are the same. All

these statements have exactly one control-
ow successor. For vertices v

such that SuccB (v) = fwg, we de�ne sSuccB (v) = w. Each statement

passes control to its single successor sSuccB (i1) and does not change

the state of the program.

{ The transition for parallel assignment again passes control to the sole

successor of the statement and the state changes in the expected man-

ner.

{ The transitions for if , while and assert statements are identical. If

the value of the decider d associated with the statement is ? then

i1 � i2
2

skip

print

goto

return

� = � i2 = sSuccB (i1)
2 =
1

x1; : : : ; xk :=

e1; : : : ; ek
� = � i2 = sSuccB (i1)

2 =
1[x1=
1(e1))]

� � � [xk=
1(ek)]

if(d)

while(d)

assert(d)

� = �

if d = ?

i2 2 SuccB (i1)

if
1(d) = 1

i2 = TsuccB (i1)

if
1(d) = 0

i2 = FsuccB (i1)

2 =
1

pr(e1; : : : ; ek)
� = hcall;ReturnPtB (i1); �i,

�(x) =
1(x); 8 x 2 LocalsB (i1)
i2 = FirstB(pr)

2(xi) =
1(ei);

8 xi 2 FormalsB (i2)

2(g) =
1(g);

8 g 2 Globals(B)

Exitpr � = hret; i2; �i i2 2 SuccB (i1)

2(g) =
1(g);

8 g 2 Globals(B)

2(x) = �(x);

8 x 2 LocalsB (i2)

Table 1. Conditions on the state transitions hi1;
1i
�

!Bhi2;
2i, for each vertex type

of i1. See the text for a full explanation.

the successor is chosen non-deterministically from the set SuccB (i1).

Otherwise, d is a boolean expression and is evaluated in the current

state to determine the successor.
{ The transition for a call statement si1 contains the � label

hcall;ReturnPtB (i1);�i

where � records the values of the local variables at i1 from the state

1. The next state,
2 gives new values to the formal parameters of

the called procedure based on the values of the corresponding actual

arguments in state
1. Furthermore,
2 is constrained to be the same

as
1 on the global variables.
{ Finally, the transition for an exit vertex i1 = Exitpr has � = hret; i2;�i,

where i2 must be a successor of i1. The output state
2 is constrained

as follows:
2 must agree with
1 on all global variables;
2 must

agree with � on the local variables in scope at i2.

2.5 Trace Semantics

We now are in a position to give a trace semantics to boolean programs

based on a context-free grammar G(B) over the alphabet �(B) that spec-

1. S !MS

2. 8hcall; i; �i 2 �(B) :

S ! hcall; i; �i S

3. S ! �

4. 8hcall; i; �i; hret; i; �i 2 �(B) :

M ! hcall; i; �i M hret; i; �i

5. M !MM

6. M ! �

7. M ! �

Table 2. The production rules Rules(B) for grammar G(B).

i�es the legal sequences of calls and returns that a boolean program B

may make.

A context-free grammar G is a 4-tuple hN;T;R; Si, where N is a set

of nonterminals, T is a set of terminals, R is a set of production rules

and S 2 N is a start symbol. For each program B, we de�ne a grammar

G(B) = hfS;Mg; �(B);Rules(B); Si, where Rules(B) is de�ned by the

productions of Table 2.

If we view the terminals hcall; i;�i and hret; i;�i from �(B) as

matching left and right parentheses, the language L(G(B)) is the set of

all strings over �(B) that are sequences of partially-balanced parenthe-

ses. That is, every right parenthesis hret; i;�i is balanced by a preceding

hcall; i;�i but the converse need not hold. The � component insures that

the values of local variables at the time of a return are the same as they

were at the time of the corresponding call (this must be the case because

boolean programs have a call-by-value semantics). The nonterminal M

generates all sequences of balanced calls and returns, and S generates all

sequences of partially balanced calls and returns. This allows us to rea-

son about non-terminating or abortive executions. Note again that the

number of productions is �nite because B contains only boolean variables.

We assume that B contains a distinguished procedure named main,

which is the initial procedure that executes. A state � = hi;
i is initial

if i = FirstB (main) (all variables can take on arbitrary initial values). A

�nite sequence � = �0
�1
!B�1

�2
!B � � � �m�1

�m
!B�m is a trajectory of B if (1)

for all 0 � i < m, �i
�i!B�i+1, and (2) �1 : : : �m 2 L(G(B)). A trajectory �

is called an initialized trajectory if �0 is an initial state of B. If � is an ini-

tialized trajectory, then its projection to vertices � (�0); � (�1); : : : ; � (�n)

is called a trace of B. The semantics of a boolean program is its set of

traces. A state � of B is reachable if there exists an initialized trajectory

of B that ends in �. An vertex v 2 VB is reachable if there exists a trace

of B that ends in vertex v.

3 Boolean Programs Reachability via Interprocedural

Data
ow Analysis and BDDs

In this section, we present an interprocedural data
ow analysis that, given

a boolean program B and its control-
ow graph GB = (VB ;SuccB), de-

termines the reachability status of every vertex in VB. We describe and

present the algorithm, show how it can be extended to report short tra-

jectories (when a vertex is found to be reachable), and describe several

optimizations that we plan to make to the algorithm.

3.1 The RHS Algorithm, Generalized

As discussed in the Introduction, we have generalized the interprocedural

data
ow algorithm of Reps-Horwitz-Sagiv (RHS) [RHS95,RHS96]. The

main idea of this algorithm is to compute \path edges" that represent

the reachability status of a vertex in a control-
ow graph and to compute

\summary edges" that record the input/output behavior of a procedure.

We (re)de�ne path and summary edges as follows:

Path edges. Let v be a vertex in VB and let e = FirstB (ProcOfB (v)). A

path edge incident into a vertex v, is a pair of valuations h
e;
vi,
5 such

that(1) there is a initialized trajectory �1 = hFirstB (main);
i : : : he;
ei,

and (2) there is a trajectory �2 = he;
ei : : : hv;
vi that does not contain

the exit vertex ExitProcOfB (v) (exclusive of v itself). For each vertex v,

PathEdges(v) is the set of all path edges incident into v.

A summary edge is a special kind of path edges that records the

behavior of a procedure.

Summary edges. Let c be a vertex in VB representing a procedure

call with corresponding statement sc = pr(e1; e2; :::ek). A summary edge

associated with c is a pair of valuations h
1;
2i, such that all the local

variables in LocalsB (c) are equal in
1 and
2, and the global variables

change according to some path edge from the entry to the exit of the

callee. Suppose P is the set of path edges at Exitpr. We de�ne Liftc(P;pr)

as the set of summary edges obtained by \lifting" the set of path edges

P to the call c, while respecting the semantics of the call and return

5 The valuations
e and
v are de�ned with respect to the set of variables V =

InScopeB (e) = InScopeB (v).

transitions from Table 1. Formally

Liftc(P;pr) = fh
1;
2i j9h
i;
oi 2 P; and

8x 2 LocalsB (c) :
1(x) =
2(x); and

8x 2 Globals(B) : (
1(x) =
i(x)) ^ (
2(x) =
o(x)); and

8 formals yj of pr and actuals ej :
1(ej) =
i(yj)g

For each vertex v in CallB , SummaryEdges(v) is the set of summary

edges associated with v. As the algorithm proceeds, SummaryEdges(v)

is incrementally computed for each call site. Summary edges are used

to avoid revisiting portions of the state space that have already been

explored, and enable analysis of programs with procedures and recursion.

Let CallB be the set of vertices in VB that represent call statements.

Let ExitB be the set of exit vertices in VB . Let CondB be the set of vertices

in VB that represent the conditional statements if , while and assert.

Transfer Functions. With each vertex v such that sv 62 CondB [ExitB ,

we associate a transfer function Transfer v. With each vertex v 2 CondB ,

we associate two transfer functions Transfer v;true and Transfer v;false . The

de�nition of these functions is given in Table 3. Given two sets of pairs

of valuations, S and T , Join(S; T) is the image of set S with respect to

the transfer function T . Formally Join(S; T) = fh
1;
2i j 9
j:h
1;
ji 2

S ^ h
j ;
2i 2 Tg. During the processing of calls, in addition to applying

the transfer function, the algorithm uses the function SelfLoop which takes

a set of path edges, and makes self-loops with the targets of the edges.

Formally, SelfLoop(S) = fh
2;
2i j 9h
1;
2i 2 Sg.

Our generalization of the RHS algorithm is shown in Figure 3. The

algorithm uses a worklist, and computes path edges and summary edges

in a directed, demand-driven manner, starting with the entry vertex of

main (the only vertex initially known to be reachable). In the algorithm,

path edges are used to compute summary edges, and vice versa. In our

implementation, we use BDDs to represent transfer functions, path edges,

and summary edges. As is usual with BDDs, a boolean expression e de-

notes the set of states
e = f
j
(e) = 1g. A set of pairs of states can

easily be represented with a single BDD using primed versions of the

variables in V (B) to represent the variables in the second state. Since

transfer functions, path edges, and summary edges are sets of pairs of

states, we can represent and manipulate them using BDDs.

Upon termination of the algorithm, the set of path edges for a vertex

v is empty i� v is not reachable. If v is reachable, we can generate a

shortest trajectory to v, as described in the next section.

global

PathEdges ,SummaryEdges ,WorkList

procedure Propagate(v,p)

begin

if p 6� PathEdges(v) then

PathEdges(v) := PathEdges(v) [p

Insert v into WorkList �

�

end

procedure Reachable(GB)

begin

for all v 2 VB do PathEdges(v) := fg

for all v 2 CallB do SummaryEdges(v) := fg

PathEdges(FirstB (main)) :=

fh
;
i j
 is any valuation to globals and local variables of maing

WorkList := fFirstB (main)g

while WorkList 6= ; do

remove vertex v from WorkList

switch (v)

case v 2 CallB :

Propagate(sSuccB (v),SelfLoop(Join(PathEdges(v);Transferv)))

Propagate(ReturnPtB (v),Join(PathEdges(v);SummaryEdges(v)))

case v 2 ExitB :

for each w 2 SuccB (v) do

let

c 2 CallB such that w = ReturnPtB (c) and

s = Lift
c
(PathEdges(v);ProcOfB(v))

in

if s 6� SummaryEdges(c) then

SummaryEdges(c) := SummaryEdges(c) [s

Propagate(w,Join(PathEdges(c); SummaryEdges(c)));

ni

case v 2 CondB :

Propagate(TsuccB (v);Join(PathEdges(v);Transfer v;true))

Propagate(FsuccB (v); Join(PathEdges(v);Transferv;false))

case v 2 VB �CallB � ExitB � CondB :

let p = Join(PathEdges(v);Transfer
v
) in

for each w 2 SuccB (v) do

Propagate(w,p)

ni

end

Fig. 3. The model checking algorithm.

v Transfer
v

skip

print

goto

return

�h
1;
2i:(
2 =
1)

x1; : : : ; xk :=

e1; : : : ; ek
�h
1;
2i:(
2 =
1[x1=
1(e1))] � � � [xk=
1(ek)])

if(d)

while(d)

assert(d)

Transfer
v;true = �h
1;
2i:((
1(d) = 1) ^ (
2 =
1))

Transfer
v;false = �h
1;
2i:((
1(d) = 0) ^ (
2 =
1))

pr(e1; : : : ; ek)
�h
1;
2i:(
2 =
1[x1=
1(e1)] : : : [xk=
1(ek)]),

where x1; : : : ; xk are the formal parameters of pr.

Table 3. Transfer functions associated with vertices. These are derived directly from

the transition rules given in Table 1

3.2 Generating a Shortest Trajectory to a Reachable Vertex

We now describe a simple extension to the algorithm of Figure 3 to keep

track of the length of the shortest hierarchical trajectory needed to reach

each state, so that if vertex v is reachable, we can produce a shortest

initialized hierarchical trajectory that ends in v.

A hierarchical trajectory can \jump over" procedure calls using sum-

mary edges. Formally, a �nite sequence � = �0
�1
!B�1

�2
!B � � � �m�1

�m
!B�m

is a hierarchical trajectory of B if for all 0 � i < m, (1) either �i
�i
!B�i+1,

or �i = hvi;
ii, �i+1 = hvi+1;
i+1i, �i = �, vi 2 CallB and h
i;
i+1i 2

SummaryEdges(vi), and (2) �1 : : : �m 2 L(G(B)).

Let v be a vertex and let e = FirstB (ProcOfB (v)). For a path edge

h
e;
vi 2 PathEdges(v) let W (h
e;
vi) be the set of all hierarchical

trajectories that start from main, enter into the procedure ProcOfB (v)

with valuation
e and then reach v with valuation
v without exiting

ProcOfB (v). Note that a hierarchical trajectory in W (h
e;
vi) is com-

prised of intraprocedural edges, summary edges, and edges that represent

calling a procedure (but not the edges representing a return from a pro-

cedure). Instead of keeping all the path edges incident on v as a single set

PathEdges(v), we partition it into a set of sets

fPathEdgesr1(v);PathEdges r2(v); : : : ;PathEdgesrk(v)g

where a path edge h
e;
vi is in PathEdgesrj (v) i� the shortest hierar-

chical trajectory in W ((h
e;
vi) has length rj. The set fr1; r2; : : : ; rkg

is called the set of rings associated with v.

We use rings to generate shortest hierarchical trajectories. If vertex v

is reachable, we �nd the smallest ring r such that PathEdgesr(v) exists.

Then we pick an arbitrary path edge h
e;
vi from PathEdgesr(v), and

do the following depending on the type of vertex v:

{ If v 6= FirstB (ProcOfB (v)) then we have two subcases:
� If sv is not a skip immediately following a call, then we look for

a predecessor u of v such that there exists path edge h
e;
ui in

PathEdgesr�1(u), and Join(fh
e;
uig;Transferu) contains h
e;
vi.

� If sv is a skip immediately following a call (say at vertex u), then

we look for a path edge h
e;
ui in PathEdgesr�1(u) such that

Join(fh
e;
uig;SummaryEdges (u)) contains h
e;
vi.

{ If v = FirstB (ProcOfB (v)), then it should be the case that e = v,

and
v =
e. We �nd a caller u of ProcOfB (v), and suitably \lift"

v to a suitable path edge in PathEdges(u). Formally, we �nd a

vertex u 2 CallB such that su is a call to procedure ProcOfB (v),

and there exists path edge h
0

e;
ui in PathEdgesr�1(u) satisfying

Transferu(h
u;
vi).

Repeating this process with the vertex u and the path edge found

in PathEdgesr�1(u), we are guaranteed to reach the entry of main in

r steps. We may traverse over summary edges in the process. However,

we can expand the summary edges on demand, to produce a hierarchical

error trajectory, as shown in the Bebop output in Figure 1.

3.3 Optimizations

The basic algorithm described above has been implemented in the Bebop

model checker. In this section, we describe a few optimizations based

on ideas from compiler optimization [ASU86] that should substantially

reduce the size of the BDDs needed to perform the analysis.

Live Ranges. If for some path starting at a vertex v in the control-
ow

graph GB, the variable x is used before being de�ned, then variable x is

said to be live at v. Otherwise, x is said to be dead at v, for its value at

v will not
ow to any other variable. If variable x is not live at vertex

v then we need not record the value of x in the BDD for PathEdges(v).

Consider the following boolean program

void main()

begin

decl a,b,c,d,e,f;

L1: a := b|c; // {b,c,e} live at L1

L2: d := a|e; // {a,e} live at L2

L3: e := d|e; // {d,e} live at L3

L4: f := d; // {d} live at L4

end

This program declares and refers to six variables, but at most three vari-

ables are live at any time. For example, at the statement labelled L1 only

the values of the variables b, c, and e can
ow to the statements after L1.

As a result, the BDD for the �rst statement need not track the values of

the variables a or d.

MOD/REF sets. A traditional \MOD/REF" (modi�cation/reference)

analysis of a program determines the variables that are modi�ed and/or

referenced by each procedure pr (and the procedures it calls transitively).

Let pr be a procedure in B such that pr nor any of the procedures it calls

(transitively) modi�es or references global variable g. Although g may be

in scope in pr, and may in fact be live within pr, the procedure pr cannot

change the value of g. As a result, all that is needed is to record that g

remains unchanged, for any summary of pr.

4 Evaluation

In this section, we present an evaluation of Bebop on a series of synthetic

programs derived from the template T shown in Figure 4. The template

allows us to generate boolean programs T (N) for N > 0. The boolean

program T (N) has one global variable g and N + 1 procedures |a pro-

cedure main, and N procedures of the form level<i> for 0 < i � N .

For 0 < j < N , the two instances of <stmt> in the body of procedure

level<j> are replaced by a call to procedure level<j+1>. The two in-

stances of <stmt> in the body of procedure level<N> are replaced by

skip.

As a result, a boolean program T (N) has N + 1 procedures, where

main calls level1 twice, level1 calls level2 twice, etc. At the beginning

of each level procedure, a choice is made depending on the value of g. If

g is 1 then a loop is executed that implements a three bit counter over the

local variables a, b, and c. If g is 0 then two calls in succession are made

to the next level procedure. In the last level procedure, if g is 0 then

two skip statements are executed. At the end of each level procedure,

the global variable g is negated. Every program T (N) generated from this

template has four variables visible at any program point, regardless of N .

Note that g is not initialized, so Bebop will explore all possible values for

g.

We ran Bebop to compute the reachable states for boolean programs

T (N) in 0 < N � 800, and measured the running time, and peak memory

used. Figure 4(a) shows how the running time of Bebop (in seconds) varies

decl g;

void main()

begin

level1();

level1();

if(!g) then

reach: skip;

else

skip;

fi

end

void level<i>()

begin

decl a,b,c;

if(g) then

a,b,c := 0,0,0;

while(!a|!b|!c) do

if (!a) then

a := 1;

elsif (!b) then

a,b := 0,1;

elsif (!c) then

a,b,c := 0,0,1;

fi

od

else

<stmt>; <stmt>;

fi

g := !g;

end

Running time for T(N)

0

50

100

150

200

250

300

0 200 400 600 800 1000

N
R

u
n

n
in

g
 t

im
e

fo
r

T
(N

)
(s

ec
o

n
d

s)

CU

CMU

(a)

Peak Live BDD Nodes

0

50000

100000

150000

200000

250000

0 200 400 600 800 1000

N

P
ea

k
S

p
ac

e
fo

r
T

(N
)

(b)

Fig. 4. Boolean program template T for performance test and performance results.

with N . Figure 4(b) shows how the peak memory usage of Bebop varies

with N .

The two curves in Figure 4(a) represent two di�erent BDD packages:

CU is the CUDD package from Colorado University [Som98] and CMU is

the BDD package from Carnegie Mellon University [Lon93]. We note that

the program T (800) has 2401 variables. Model checking of this program

takes a minute and a half with the CMU package and four and a half min-

utes with the CUDD package. Both times are quite reasonable considering

the large number of variables (relative to traditional uses of BDDs). The

space measurements in Figure 4(b) are taken from the CUDD package,

which provides more detailed statistics of BDD space usage.

We expected the peak memory usage to increase linearly with N .

The sublinear behavior observed in Figure 4(b) is due to more frequent

garbage collection at larger N . We expected the running time also to

increase linearly with N . However, Figure 4(a) shows that the running

time increases quadratically with N . The quadratic increase in running

time was unexpected, since the time complexity of model checking pro-

gram T (N) is O(N) (there are 4 variables in the scope of any program

point). By pro�ling the runs and reading the code in the BDD packages,

we found that the quadratic behavior arises due to an ine�ciency in

the implementation of bdd substitute in the BDD package. Bebop calls

bdd substitute in its \inner loop", since variable renaming is an essen-

tial component of its forward image computation. While model checking

T (N), the BDD manager has O(N) variables, but we are interested in

substituting O(n) variables, for a small n, using bdd substitute. Re-

gardless of n, we found that bdd substitute still consumes O(N) time.

Both the CUDD and CMU packages had this ine�ciency. If this ine�-

ciency is �xed in bdd substitute, we believe that the running time of

Bebop for T (N) will vary linearly with N .

5 Related Work

Model checking for �nite state machines is a well studied problem, and

several model checkers |SMV [McM93], Mur� [Dil96], SPIN [HP96],

COSPAN [HHK96], VIS [BHSV+96] and MOCHA [AHM+98]| have

been developed. Boolean programs implicitly have an unbounded stack,

which makes them identical in expressive power to pushdown automata.

The model checking problem for pushdown automata has been studied be-

fore [SB92] [BEM97] [FWW97]. Model checkers for push down automata

have also been written before [EHRS00]. However, unlike boolean pro-

grams, these approaches abstract away data, and concentrate only on

control. As a result spurious paths can arise in these models due to infor-

mation loss about data correlations.

The connections between model checking, data
ow analysis and ab-

stract interpretation have been explored before [Sch98] [CC00]. The

RHS algorithm [RHS95,RHS96] builds on earlier work in interprocedu-

ral data
ow analysis from [KS92] and [SP81]. We have shown how this

algorithm can be generalized to work as a model checking procedure for

boolean programs. Also, our choice of hybrid representation of the state

space in Bebop|an explicit representation of control
ow and an implicit

BDD-based representation of path edges and summary edges| is novel.

Exploiting design modularity in model checking has been recognized

as a key to scalability of model checking [AH96] [AG00] [McM97] [HQR98].

The idea of harnessing the inherent modularity in procedural abstrac-

tion, and exploiting locality of variable scoping for e�ciency in model

checking software is new, though known in the area of data
ow analy-

sis [RHS96]. Existing model checkers neither support nor exploit proce-

dural abstraction. As a result, existing approaches to extract models from

software are forced to inline procedure de�nitions at their points of invo-

cation [CDH+00], which could lead to explosion in both the size of the

model and the number of variables.

6 Future Work

Bebop is part of a larger e�ort called SLAM6, in progress at Microsoft

Research, to extract abstract models from code and check temporal prop-

erties of software. We are currently implementing a methodology that uses

boolean programs, and an iterative re�nement process using path simu-

lation to model check critical portions of operating system code [BR00].

References

[AG00] A. Alur and R. Grosu. Modular re�nement of hierarchic reactive modules.

In POPL 00: Principles of Programming Languages. ACM Press, 2000.

[AH96] R. Alur and T.A. Henzinger. Reactive modules. In LICS 96: Logic in

Computer Science, pages 207{218. IEEE Computer Society Press, 1996.

[AHM+98] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and

S. Tasiran. Mocha : Modularity in model checking. In CAV 98: Computer

Aided Veri�cation, LNCS 1427, pages 521{525. Springer-Verlag, 1998.

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and

Tools. Addison-Wesley, Reading, MA, 1986.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown

automata: Application to model-checking. In CONCUR 97: Concurrency

Theory, LNCS 1243, pages 135{150. Springer-Verlag, 1997.

[BHSV+96] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,

A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo,

S. Qadeer, R.K. Ranjan, S. Sarwary, T.R. Shiple, G. Swamy, and T. Villa.

VIS: A System for Veri�cation and Synthesis. In CAV 96: Computer Aided

Veri�cation, LNCS 1102, pages 428{432. Springer-Verlag, 1996.

[BR00] T. Ball and S. K. Rajamani. Boolean programs: A model and process for

software analysis. Technical Report MSR-TR-2000-14, Microsoft Research,

February 2000.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677{691, 1986.

6 http://www.research.microsoft.com/slam/

[CC00] P. Cousot and R. Cousot. Temporal abstract interpretation. In POPL 00:

Principles of Programming Languages. ACM Press, 2000.
[CDH+00] James Corbett, Matthew Dwyer, John Hatcli�, Corina Pasareanu, Robby,

Shawn Laubach, and Hongjun Zheng. Bandera : Extracting �nite-state

models from java source code. In ICSE 2000: International Conference on

Software Engineering, 2000.
[Dil96] D. L. Dill. The Mur� Veri�cation System. In CAV 96: Computer Aided

Veri�cation, LNCS 1102, pages 390{393. Springer-Verlag, 1996.
[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. E�cient algo-

rithms for model checking pushdown systems. Technical Report TUM-

I0002, SFB-Bericht 342/1/00 A, Technische Universitat Munchen, Institut

fur Informatik, February 2000.
[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model

checking pushdown systems. In INFINITY' 97: Veri�cation of In�nite-

state Systems, July 1997.
[HHK96] R.H. Hardin, Z. Har'El, and R.P. Kurshan. COSPAN. In CAV 96:

Computer Aided Veri�cation, LNCS 1102, pages 423{427. Springer-Verlag,

1996.
[HP96] G.J. Holzmann and D.A. Peled. The State of SPIN. In CAV 96: Computer

Aided Veri�cation, LNCS 1102, pages 385{389. Springer-Verlag, 1996.
[HQR98] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. You assume, we guarantee:

methodology and case studies. In CAV 98: Computer Aided Veri�cation,

LNCS 1427, pages 440{451. Springer-Verlag, 1998.
[KS92] J. Knoop and B. Ste�en. The interprocedural coincidence theorem. In CC

92: Compiler Construction, LNCS 641, pages 125{140, Springer-Verlag,

1992.
[Lon93] D. Long. Cmu bdd package. http://emc.cmu.edu/pub, Carnegie Melon

University, 1993.
[McM93] K.L. McMillan. Symbolic Model Checking: An Approach to the State-

Explosion Problem. Kluwer Academic Publishers, 1993.
[McM97] K.L. McMillan. A compositional rule for hardware design re�nement. In

CAV 97: Computer-Aided Veri�cation, LNCS 1254, pages 24{35. Springer-

Verlag, 1997.
[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural data
ow anal-

ysis via graph reachability. In POPL 95: Principles of Programming Lan-

guages, pages 49{61. ACM Press, 1995.
[RHS96] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural data
ow anal-

ysis with applications to constant propagation. Theoretical Computer Sci-

ence, 167:131{170, 1996.
[SB92] B. Ste�en and O. Burkart. Model checking for context-free processes. In

CONCUR 92: Concurrency Theory, LNCS 630, pages 123{137. Springer-

Verlag, 1992.
[Sch98] D.A. Schmidt. Data
ow analysis is model checking of abstract interpre-

tation. In POPL 98: Principles of Programming Languages, pages 38{48.

ACM Press, 1998.
[Som98] F. Somenzi. Colorado university decision diagram package.

ftp://vlsi.colorado.edu/pub, University of Colorado, Boulder, 1998.
[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data dalow

analysis. In Program Flow Analysis: Theory and Applications, pages 189{

233. Prentice-Hall, 1981.

