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1. Introduction. This primer describes four MATLAB functions for the iterative solution of large
linear discrete ill-posed problems,

Ax = b, A ∈ Rm×m, x, b ∈ Rm, (1.1)

with an error-contaminated right-hand side b. The functions rrgmres iter and rrgmres dp are for problems
with a (square) nonsymmetric matrix, and the functions sym rrgmres iter and sym rrgmres dp are for the
solution of large symmetric problems. The iterative methods implemented by these functions are described
in [6, 7], where also several properties of these methods are discussed. The primer also describes several
auxiliary MATLAB functions.

2. Files and installation. The software is available from Netlib at

http://www.netlbib.org/numeralgo/

as the na33 package and is stored as a compressed archive in the file rrgmrestbx.zip. Installation details
are discussed in this primer as well as in the README.txt file. The files in the rrgmrestbx.zip are listed
in Table 2.1. All files should be extracted and placed in the same directory before use. The code has been
developed and tested using MATLAB version 7.11 (R2010b) by MathWorks. No other MathWorks products
or toolboxes are required. To use all features of the demos, certain test problems from the MATLAB package
Regularization Tools by Hansen [3] should be available. These functions are freely available on the Internet;
see http://www2.imm.dtu.dk/∼pch/Regutools/index.html

3. Input parameters for and output from rrgmres iter, rrgmres dp, sym rrgmres iter, and
sym rrgmres dp. These functions require specific input parameters. Table 3.1 displays the syntax for input
parameters and for the output for each function. A detailed description of each input parameter, as well of
the output, is provided in Table 3.2.

4. Graphical user interface demos. Demos for the rrgmres algorithms for symmetric and nonsym-
metric linear discrete ill-posed problems (1.1) are included. The demo for problems with a square nonsym-
metric matrix is executed with the command rrgmres demo, and the demo for symmetric problems can be
run with the command sym rrgmres demo. Both demos have graphical interfaces that can be used to specify
various parameter values. No parameter is required to be input from the command line. Descriptions of the
parameters for both demos are presented in Table 4.1. Once the appropriate parameters have been specified,
clicking Run will execute the demo.

Let b̂ denote the unknown error-free right-hand side associated with the error-contaminated right-hand
side b of (1.1) and let x̂ be the least-squares solution of minimal Euclidean norm of the linear system Ax = b̂.
Let the iterate xk satisfy a specified stopping rule. The approximate solution xk of (1.1) as well as x̂ are
plotted. The number of iterations, k, the relative error of ‖xk− x̂‖/‖x̂‖, as well as the relative residual errors

‖b−Axk‖/‖b̂‖ are displayed for k = 0, 1, 2, . . ..
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Table 2.1
Files in rrgmrestbx.zip

File Description
Contents.m List of all files in rrgmrestbx.zip with brief descriptions, similar

to the list and descriptions of this table.
README.txt Installation instructions.
baart alt.m Discretization of the Fredholm integral equation of the first kind

described by Baart [1] using a Nyström method based on the
composite trapezoidal rule with equidistant nodes. The linear
discrete ill-posed problem obtained has a square nonsymmetric
matrix.

deriv2 alt.m Discretization of a Fredholm integral equation of the first kind
that is a Green’s function for the second derivative on the interval
[0, 1]; see, e.g., [2, 5] for a description of the integral equation.
The discrete problem is obtained by a Nyström method based on
the composite trapezoidal rule with a square matrix. The linear
discrete ill-posed problem obtained has a square nonsymmetric
matrix. The solution can be chosen to be a discretized linear or
exponential function.

phillips alt.m Discretization of the Fredholm integral equation of the first kind
described by Phillips [8] using a Nyström method based on the
composite trapezoidal rule with equidistant nodes. The linear
discrete ill-posed problem obtained has a square nonsymmetric
matrix.

rrgmres demo.fig The graphical interface for the RRGMRES demo for linear dis-
crete ill-posed problems with a square nonsymmetric matrix.

rrgmres demo.m The RRGMRES demo for linear discrete ill-posed problem with a
square nonsymmetric matrix.

rrmgres dp.m The RRGMRES algorithm for linear discrete ill-posed problems
with a square nonsymmetric matrix. This version uses the dis-
crepancy principle to decide when to terminate the iterations.

rrgmres iter.m The RRGMRES algorithm for linear discrete ill-posed problems
with a square nonsymmetric matrix. This version allows the user
to specify the desired number of iterations.

shaw alt.m Discretization of the Fredholm integral of the first kind discussed
by Shaw [9] using a Nyström method based on the composite
trapezoidal rule with equidistant nodes. The linear discrete ill-
posed problem obtained has a square nonsymmetric matrix.

sym rrgmres demo.fig The graphical interface for demo for the RRGMRES method for
linear discrete ill-posed problems with a symmetric matrix.

sym rrgmres demo.m The demo for the RRGMRES method for linear discrete ill-posed
problems with a symmetric matrix.

sym rrgmres dp.m The RRGMRES algorithm for linear discrete ill-posed problems
with a symmetric matrix. This version uses the discrepancy prin-
ciple to decide when to terminate the iterations.

sym rrgmres iter.m The RRGMRES algorithm for linear discrete ill-posed problems
with a symmetric matrix. This version allows the user to specify
the number of desired iterations.
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Table 2.2
Files from Regularization Tools [3]

File Description
baart.m Discretization of the Fredholm integral equation of the first kind

described by Baart [1] by a Galerkin method with orthonormal
piecewise constant test and trial functions. The linear discrete
ill-posed problem obtained has a square nonsymmetric matrix.

deriv2.m Discretization of a Fredholm integral equation of the first kind
that is a Green’s function for the second derivative on the interval
[0, 1]; see, e.g., [2, 5] for a description of the integral equation. The
discretization is carried out by a Galerkin method with orthonor-
mal piecewise constant test and trial functions. This discretization
yields a linear discrete ill-posed problem with a symmetric matrix.

phillips.m Discretization of the Fredholm integral equation of the first kind
described by Phillips [8] by a Galerkin method with orthonormal
piecewise constant test and trial functions. This discretization
yields a linear discrete ill-posed problem with a symmetric matrix.

shaw.m Discretization of the Fredholm integral of the first kind discussed
by Shaw [9] by a Galerkin method with orthonormal piecewise
constant test and trial functions. This discretization yields a linear
discrete ill-posed problem with a symmetric matrix.

Table 3.1
Syntax for rrgmres iter, rrgmres dp, sym rrgmres iter, and sym rrgmres iter.

File Syntax
rrgmres iter.m [X,resnrm]=rrgmres iter(A,b,iterations)

rrgmres dp.m [X,resnrm,iterations]= rrgmres dp(A,b,discrepancy)

sym rrgmres iter.m [X,resnrm]=sym rrgmres iter(A,b,iterations)

sym rrgmres dp.m [X,resnrm,iterations]= sym rrgmres dp(A,b,discrepancy)

4



Table 3.2
Input parameters for and output from rrgmres iter, rrgmres dp, sym rrgmres iter, and sym rrgmres iter.

Input parameters Description
A The m×m matrix of the linear discrete ill-posed problem (1.1).
b The right-hand side vector of (1.1).
iterations The number of iterations to carry out. The initial iterate is x0 = 0.

The computations are terminated after iterations iterations.
discrepancy This stopping criterion allows termination of the iterations based

on the discrepancy principle; see [4, 6, 7]. The computations are
terminated as soon as an iterate xk has been determined such that

‖Axk − b‖ ≤ discrepancy. (3.1)

Here xk denotes the kth iterate; the initial iterate is x0 = 0. The
iterations also are terminated when this stopping criterion is not
satisfied after m iterations.

Output Description
X An m×k matrix X = [x1, x2, . . . , xk], where x1, x2, . . . , xk are the

iterates computed before termination. The initial iterate x0 = 0
is not stored. Thus, k is equal to the input parameter iterations
when the functions rrgmres iter or sym rrgmres iter are used.
If one applies of the functions rrgmres dp or sym rrgmres dp in-
stead, then k is the number of iterations carried out before the
computations are terminated.

resnrm A vector containing the norm of the residual errors associated
with the computed iterates x1, x2, . . . , xk:

resnrm = [‖Ax1 − b‖, ‖Ax2 − b‖, . . . , ‖Axk − b‖]T .

iterations Output parameter for the functions rrgmres dp and
sym rrgmres dp. This parameter shows the number of iter-
ations that have been carried out when the stopping criterion
(3.1) is satisfied. Thus, the value of iterations is that of the
parameter k above. If iterations= n, then the value of the last
entry of the vector resnrm can be used to determine whether or
not the stopping criterion (3.1) is satisfied by the last computed
iterate.

5



Table 4.1
Description of parameters for rrmgres demo and sym rrgmres demo.

Parameter Description
Problem section
Example A user can choose sample linear discrete ill-posed problems (1.1).

For the symmetric demo, the examples use the functions from
Table 2.2 that generate linear discrete ill-posed problems with
a symmetric matrix. The nonsymmetric demo uses these func-
tions as well as those from Tables 2.1 and 2.2 that generate linear
discrete ill-posed problems with a nonsymmetric matrix. The ex-
amples require specification of the parameter Order, which is the
size m in (1.1).

Specified A user can specify both the matrix and vector.
Error Section
Seed Specify a seed for the random number generator.
Relative norm of noise If the right-hand side b of (1.1) is to be contaminated by an error

e, then we let b = b̂ + e, where b̂ is the error-free right-hand side
associated with the solution x̂, i.e., Ax̂ = b̂. The vector e has
normally distributed entries with zero mean. The relative norm
of the error in the right-hand side, ‖e‖/‖b̂‖, can be prescribed.

Iterations Section
Discrepancy principle The iterations are terminated when (3.1) holds. We may choose

to specify either the value for discprepancy or the value for the
constant η. By specifying η, with η ≥ 1, discrepancy = η‖e‖ will
be calculated. The value for η should be chosen independently of
‖e‖.

Specified iterations The algorithm carries out the specified number of iterations. The
user-specified number of iterations should be less than m, the
order of the problem (1.1) to be solved.
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