subroutine fpopsp(ifsu,ifsv,ifbu,ifbv,u,mu,v,mv,r,mr,r0,r1,dr, * iopt,ider,tu,nu,tv,nv,nuest,nvest,p,step,c,nc,fp,fpu,fpv, * nru,nrv,wrk,lwrk) c given the set of function values r(i,j) defined on the rectangular c grid (u(i),v(j)),i=1,2,...,mu;j=1,2,...,mv, fpopsp determines a c smooth bicubic spline approximation with given knots tu(i),i=1,..,nu c in the u-direction and tv(j),j=1,2,...,nv in the v-direction. this c spline sp(u,v) will be periodic in the variable v and will satisfy c the following constraints c c s(tu(1),v) = dr(1) , tv(4) <=v<= tv(nv-3) c c s(tu(nu),v) = dr(4) , tv(4) <=v<= tv(nv-3) c c and (if iopt(2) = 1) c c d s(tu(1),v) c ------------ = dr(2)*cos(v)+dr(3)*sin(v) , tv(4) <=v<= tv(nv-3) c d u c c and (if iopt(3) = 1) c c d s(tu(nu),v) c ------------- = dr(5)*cos(v)+dr(6)*sin(v) , tv(4) <=v<= tv(nv-3) c d u c c where the parameters dr(i) correspond to the derivative values at the c poles as defined in subroutine spgrid. c c the b-spline coefficients of sp(u,v) are determined as the least- c squares solution of an overdetermined linear system which depends c on the value of p and on the values dr(i),i=1,...,6. the correspond- c ing sum of squared residuals sq is a simple quadratic function in c the variables dr(i). these may or may not be provided. the values c dr(i) which are not given will be determined so as to minimize the c resulting sum of squared residuals sq. in that case the user must c provide some initial guess dr(i) and some estimate (dr(i)-step, c dr(i)+step) of the range of possible values for these latter. c c sp(u,v) also depends on the parameter p (p>0) in such a way that c - if p tends to infinity, sp(u,v) becomes the least-squares spline c with given knots, satisfying the constraints. c - if p tends to zero, sp(u,v) becomes the least-squares polynomial, c satisfying the constraints. c - the function f(p)=sumi=1,mu(sumj=1,mv((r(i,j)-sp(u(i),v(j)))**2) c is continuous and strictly decreasing for p>0. c c ..scalar arguments.. integer ifsu,ifsv,ifbu,ifbv,mu,mv,mr,nu,nv,nuest,nvest, * nc,lwrk real r0,r1,p,fp c ..array arguments.. integer ider(4),nru(mu),nrv(mv),iopt(3) real u(mu),v(mv),r(mr),dr(6),tu(nu),tv(nv),c(nc),fpu(nu),fpv(nv), * wrk(lwrk),step(2) c ..local scalars.. real res,sq,sqq,sq0,sq1,step1,step2,three integer i,id0,iop0,iop1,i1,j,l,lau,lav1,lav2,la0,la1,lbu,lbv,lb0, * lb1,lc0,lc1,lcs,lq,lri,lsu,lsv,l1,l2,mm,mvnu,number c ..local arrays.. integer nr(6) real delta(6),drr(6),sum(6),a(6,6),g(6) c ..function references.. integer max0 c ..subroutine references.. c fpgrsp,fpsysy c .. c set constant three = 3 c we partition the working space lsu = 1 lsv = lsu+4*mu lri = lsv+4*mv mm = max0(nuest,mv+nvest) lq = lri+mm mvnu = nuest*(mv+nvest-8) lau = lq+mvnu lav1 = lau+5*nuest lav2 = lav1+6*nvest lbu = lav2+4*nvest lbv = lbu+5*nuest la0 = lbv+5*nvest la1 = la0+2*mv lb0 = la1+2*mv lb1 = lb0+2*nvest lc0 = lb1+2*nvest lc1 = lc0+nvest lcs = lc1+nvest c we calculate the smoothing spline sp(u,v) according to the input c values dr(i),i=1,...,6. iop0 = iopt(2) iop1 = iopt(3) id0 = ider(1) id1 = ider(3) call fpgrsp(ifsu,ifsv,ifbu,ifbv,0,u,mu,v,mv,r,mr,dr, * iop0,iop1,tu,nu,tv,nv,p,c,nc,sq,fp,fpu,fpv,mm,mvnu, * wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1), * wrk(lav2),wrk(lbu),wrk(lbv),wrk(la0),wrk(la1),wrk(lb0), * wrk(lb1),wrk(lc0),wrk(lc1),wrk(lcs),nru,nrv) sq0 = 0. sq1 = 0. if(id0.eq.0) sq0 = (r0-dr(1))**2 if(id1.eq.0) sq1 = (r1-dr(4))**2 sq = sq+sq0+sq1 c in case all derivative values dr(i) are given (step<=0) or in case c we have spline interpolation, we accept this spline as a solution. if(sq.le.0.) return if(step(1).le.0. .and. step(2).le.0.) return do 10 i=1,6 drr(i) = dr(i) 10 continue c number denotes the number of derivative values dr(i) that still must c be optimized. let us denote these parameters by g(j),j=1,...,number. number = 0 if(id0.gt.0) go to 20 number = 1 nr(1) = 1 delta(1) = step(1) 20 if(iop0.eq.0) go to 30 if(ider(2).ne.0) go to 30 step2 = step(1)*three/(tu(5)-tu(4)) nr(number+1) = 2 nr(number+2) = 3 delta(number+1) = step2 delta(number+2) = step2 number = number+2 30 if(id1.gt.0) go to 40 number = number+1 nr(number) = 4 delta(number) = step(2) 40 if(iop1.eq.0) go to 50 if(ider(4).ne.0) go to 50 step2 = step(2)*three/(tu(nu)-tu(nu-4)) nr(number+1) = 5 nr(number+2) = 6 delta(number+1) = step2 delta(number+2) = step2 number = number+2 50 if(number.eq.0) return c the sum of squared residulas sq is a quadratic polynomial in the c parameters g(j). we determine the unknown coefficients of this c polymomial by calculating (number+1)*(number+2)/2 different splines c according to specific values for g(j). do 60 i=1,number l = nr(i) step1 = delta(i) drr(l) = dr(l)+step1 call fpgrsp(ifsu,ifsv,ifbu,ifbv,1,u,mu,v,mv,r,mr,drr, * iop0,iop1,tu,nu,tv,nv,p,c,nc,sum(i),fp,fpu,fpv,mm,mvnu, * wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1), * wrk(lav2),wrk(lbu),wrk(lbv),wrk(la0),wrk(la1),wrk(lb0), * wrk(lb1),wrk(lc0),wrk(lc1),wrk(lcs),nru,nrv) if(id0.eq.0) sq0 = (r0-drr(1))**2 if(id1.eq.0) sq1 = (r1-drr(4))**2 sum(i) = sum(i)+sq0+sq1 drr(l) = dr(l)-step1 call fpgrsp(ifsu,ifsv,ifbu,ifbv,1,u,mu,v,mv,r,mr,drr, * iop0,iop1,tu,nu,tv,nv,p,c,nc,sqq,fp,fpu,fpv,mm,mvnu, * wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1), * wrk(lav2),wrk(lbu),wrk(lbv),wrk(la0),wrk(la1),wrk(lb0), * wrk(lb1),wrk(lc0),wrk(lc1),wrk(lcs),nru,nrv) if(id0.eq.0) sq0 = (r0-drr(1))**2 if(id1.eq.0) sq1 = (r1-drr(4))**2 sqq = sqq+sq0+sq1 drr(l) = dr(l) a(i,i) = (sum(i)+sqq-sq-sq)/step1**2 if(a(i,i).le.0.) go to 110 g(i) = (sqq-sum(i))/(step1+step1) 60 continue if(number.eq.1) go to 90 do 80 i=2,number l1 = nr(i) step1 = delta(i) drr(l1) = dr(l1)+step1 i1 = i-1 do 70 j=1,i1 l2 = nr(j) step2 = delta(j) drr(l2) = dr(l2)+step2 call fpgrsp(ifsu,ifsv,ifbu,ifbv,1,u,mu,v,mv,r,mr,drr, * iop0,iop1,tu,nu,tv,nv,p,c,nc,sqq,fp,fpu,fpv,mm,mvnu, * wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1), * wrk(lav2),wrk(lbu),wrk(lbv),wrk(la0),wrk(la1),wrk(lb0), * wrk(lb1),wrk(lc0),wrk(lc1),wrk(lcs),nru,nrv) if(id0.eq.0) sq0 = (r0-drr(1))**2 if(id1.eq.0) sq1 = (r1-drr(4))**2 sqq = sqq+sq0+sq1 a(i,j) = (sq+sqq-sum(i)-sum(j))/(step1*step2) drr(l2) = dr(l2) 70 continue drr(l1) = dr(l1) 80 continue c the optimal values g(j) are found as the solution of the system c d (sq) / d (g(j)) = 0 , j=1,...,number. 90 call fpsysy(a,number,g) do 100 i=1,number l = nr(i) dr(l) = dr(l)+g(i) 100 continue c we determine the spline sp(u,v) according to the optimal values g(j). 110 call fpgrsp(ifsu,ifsv,ifbu,ifbv,0,u,mu,v,mv,r,mr,dr, * iop0,iop1,tu,nu,tv,nv,p,c,nc,sq,fp,fpu,fpv,mm,mvnu, * wrk(lsu),wrk(lsv),wrk(lri),wrk(lq),wrk(lau),wrk(lav1), * wrk(lav2),wrk(lbu),wrk(lbv),wrk(la0),wrk(la1),wrk(lb0), * wrk(lb1),wrk(lc0),wrk(lc1),wrk(lcs),nru,nrv) if(id0.eq.0) sq0 = (r0-dr(1))**2 if(id1.eq.0) sq1 = (r1-dr(4))**2 sq = sq+sq0+sq1 return end